

- We wish we could keep everything in DRAM, but...
 - It's volatile
 - It's expensive

- We wish we could keep everything in DRAM, but...
 - It's volatile
 - It's expensive
- So we need to move data to and from non-volatile medium
 - Solid State or Magnetic
 - Make copies: snapshot, backup, archive

- We wish we could keep everything in DRAM, but...
 - It's volatile
 - It's expensive
- So we need to move data to and from non-volatile medium
 - Solid State or Magnetic
 - Make copies: snapshot, backup, archive
- When we move data to less expensive medium it's called tiering
 - Solid State to Hard Disk to Cloud to Tape

- We wish we could keep everything in DRAM, but...
 - It's volatile
 - It's expensive
- So we need to move data to and from non-volatile medium
 - Solid State or Magnetic
 - Make copies: snapshot, backup, archive
- When we move data to less expensive medium it's called tiering
 - Solid State to Hard Disk to Cloud to Tape
- We also move data because of locality
 - Different compute system
 - Another data center or another organization
 - Computing at Edge

- We wish we could keep everything in DRAM, but...
 - It's volatile
 - It's expensive
- So we need to move data to and from non-volatile medium
 - Solid State or Magnetic
 - Make copies: snapshot, backup, archive
- When we move data to less expensive medium it's called tiering
 - Solid State to Hard Disk to Cloud to Tape
- We also move data because of locality
 - Different compute system
 - Another data center or another organization
 - Computing at Edge
- Doing this well requires Data Management

- Moving compute closer to where data is
 - Transferring large amounts of data produced by IoT devices is too expensive
 - Decision making must occur in real time, transfers take too long
 - AI, Big Data and HPC processing gravitates to minidatacenters at Edge

- Moving compute closer to where data is
 - Transferring large amounts of data produced by IoT devices is too expensive
 - Decision making must occur in real time, transfers take too long
 - AI, Big Data and HPC processing gravitates to minidatacenters at Edge
- What happens to data & results produced at Edge?
 - Valuable IoT data as well as results should be preserved
 - Typically this means copying to one or more locations
 - Key to organizing and optimizing this process is distributed metadata
 - Workflow managers and users query metadata & schedule data movement in dormant form

- Moving compute closer to where data is
 - Transferring large amounts of data produced by IoT devices is too expensive
 - Decision making must occur in real time, transfers take too long
 - AI, Big Data and HPC processing gravitates to minidatacenters at Edge
- What happens to data & results produced at Edge?
 - Valuable IoT data as well as results should be preserved
 - Typically this means copying to one or more locations
 - Key to organizing and optimizing this process is distributed metadata
 - Workflow managers and users query metadata & schedule data movement in dormant form

- POSIX is still dominant access method in HPC
 - Typically, not 100% compliant consistency optimized for performance
 - Significant dependency of codes on POSIX semantics
- Non-HPC applications store data differently
 - Buckets of objects in cloud, or S3-API
 - Emergence of Data Lakes

- Moving compute closer to where data is
 - Transferring large amounts of data produced by IoT devices is too expensive
 - Decision making must occur in real time, transfers take too long
 - AI, Big Data and HPC processing gravitates to minidatacenters at Edge
- What happens to data & results produced at Edge?
 - Valuable IoT data as well as results should be preserved
 - Typically this means copying to one or more locations
 - Key to organizing and optimizing this process is distributed metadata
 - Workflow managers and users query metadata & schedule data movement in dormant form

- POSIX is still dominant access method in HPC
 - Typically, not 100% compliant consistency optimized for performance
 - Significant dependency of codes on POSIX semantics
- Non-HPC applications store data differently
 - Buckets of objects in cloud, or S3-API
 - Emergence of Data Lakes
- Moving POSIX data
 - Better done in dormant form where it is immutable
 - Once local to data center, data can be staged as POSIX and computed on

Data Management

What Challenges does it Solve?

- 1PB or more of unstructured file data
- Need simple & costeffective storage or backup solution

Too many files

- Billions of files that require periodic movement
- Locate & construct datasets based on workflow

Need for Speed

- Workflow requires high bandwidth or I/O rate
- HPC, data analytics or Al clusters need faster storage

Introducing Data Management Framework

Active & Dormant Data Forms

Data Management Framework

Technology Highlights

- What is DMF?
 - Data Management hub encompassing entire data life cycle
 - Policy-driven POSIX data movement & tiering solution for tape, disk and cloud
 - Scalable metadata capture & search engine based on Big Data technology
 - Scalable parallel data transfer engine optimized for backend
- Brief history of the product

File System Management

What Can DMF 7 Do?

- Maintain namespace reflection with file and directory metadata that can be queried independently of filesystem or data
- Transparently migrate & recall files on Lustre, HPE XFS and other parallel filesystems to and from versioned backend store
- De-stage & stage files and directories, including all metadata, among managed namespaces
- Recover files, directories and entire file systems, replacing backups
- Store files in a "dormant" form without file system representation
- Construct and manage datasets based on file & directory metadata, including extended attributes
- Stage datasets just-in-time on demand via API or HPC job scheduler
- Tier, copy or move datasets according to policy or workflow

Extensible Metadata Support

Data management flexibility and precision with extensible metadata

- DMF v7 is based on scalable metadata repository
- Repository functions as a long term data store for information about file system structure, attributes, contents and evolution over time
- Metadata repository supports POSIX extended attributes on files and directories,
 e.g. project name, project ID, etc.
- Queries can be run against metadata including extended attributes for precise and flexible selection of files, e.g. data set creation
- Additionally, policies can be run against the results of metadata queries for data movement, archiving, etc.

Vertical & Horizontal Data Movement

Transition to New Technology

- Manage introduction of new storage technologies over time without disruption
 - Seamlessly manage migration, validation and consolidation of massive data sets
 - Perform migration over period of weeks or months with no impact to user data access
 - Stage managed data to burst buffers or allflash filesystems

Storage

Storage

DMF 7 Software Architecture

Designed for Scalability

State-of-art open source components

- Kafka for Changelog processing
- Cassandra for Scalable Metadata
- Mesos for Task Scheduling
- Spark for Query Engine
- Zookeeper for Configuration
- Containerized Components
- Dedicated Components per Filesystem
- Component Level HA

Dynamic or Static Namespaces

Solution Scaling & Extensibility

Unified Scalable Front-End

- DMF 7 has a unified scalable front end for Lustre, HPE XFS and other filesystems (e.g. GPFS)
- Same Query and Policy engine for the all filesystem types
- Same DMF CLI for all filesystem types
- Lustre Ifs hsm commands are supported along with the native DMF CLI

Data Management | **DMF** Tape Storage Integration

- DMF is certified with libraries from HPE, as well as Spectra Logic, IBM and Oracle (StorageTek)
 - Streams to tape drive at native rates, even for small files
 - Block ID positioning for fast seek
- Support for latest LTO-8 and Enterprise-class drive technology
- Advanced feature support for accelerated retrieval and automated library management
 - Supports Data Integrity Verification (DIV) and Logical Block Protection (LBP) available with Oracle T10k and IBM LTO7 drives

Zero Watt Storage | High-Density Storage for DMF

Performance-Oriented & Power-Managed

Hardware-withsoftware solution
optimized for use
with the HPE
DMF data
management
platform

Cost-optimized
= Total cost of
storage
competitive with
Tape and lower
than Cloud

High

Performance
disk based tier
provides instant
access to first
byte and high
throughput
streaming

On-premise storage tier which can be used as a capacity storage tier as well as a fast mount cache or "relief" to RAID arrays

Solution Scaling & High Availability

- DMF can scale by adding nodes that perform the required roles
 - Add nodes that are DMF database servers to scale metadata capability
 - Add nodes that are DMF movers to scale data migration capability
- Example of large Lustre configuration
 - Five nodes each provide the DMF database server. Three of those nodes also act as the DMF core server
 - Six nodes are the DMF movers

Data Management | DMF 7 Design of Lustre Tiering to SES

DMF7 S3 Mover Performance

Four DL360 Mover Nodes | Lustre to SES

Summary | DMF 7

□ Tiered Storage

- Scalable storage tiering and backup
- High-latency media such as tape and cloud

Metadata Search

- Locate, select and move large groups of files
- Standard and userassigned attributes

Flash Scratch

- Right-sized, flashbased, "burst buffer" namespaces
- High throughput and millions of **IOPS**

Thank you

kirill.malkin@hpe.com