Why Move or Tier Data?

– We wish we could keep everything in DRAM, but…
 – It’s volatile
 – It’s expensive
Why Move or Tier Data?

– We wish we could keep everything in DRAM, but…
 – It’s volatile
 – It’s expensive

– So we need to move data to and from non-volatile medium
 – Solid State or Magnetic
 – Make copies: snapshot, backup, archive
Why Move or Tier Data?

– We wish we could keep everything in DRAM, but…
 – It’s volatile
 – It’s expensive

– So we need to move data to and from non-volatile medium
 – Solid State or Magnetic
 – Make copies: snapshot, backup, archive

– When we move data to less expensive medium it’s called tiering
 – Solid State to Hard Disk to Cloud to Tape
Why Move or Tier Data?

– We wish we could keep everything in DRAM, but…
 – It’s volatile
 – It’s expensive

– So we need to move data to and from non-volatile medium
 – Solid State or Magnetic
 – Make copies: snapshot, backup, archive

– When we move data to less expensive medium it’s called tiering
 – Solid State to Hard Disk to Cloud to Tape

– We also move data because of locality
 – Different compute system
 – Another data center or another organization
 – Computing at Edge
Why Move or Tier Data?

– We wish we could keep everything in DRAM, but…
 – It’s volatile
 – It’s expensive
– So we need to move data to and from non-volatile medium
 – Solid State or Magnetic
 – Make copies: snapshot, backup, archive
– When we move data to less expensive medium it’s called tiering
 – Solid State to Hard Disk to Cloud to Tape
– We also move data because of locality
 – Different compute system
 – Another data center or another organization
 – Computing at Edge
– Doing this well requires Data Management
Pushing Compute to Edge
Industry Trend

– Moving compute closer to where data is
 – Transferring large amounts of data produced by IoT devices is too expensive
 – Decision making must occur in real time, transfers take too long
 – AI, Big Data and HPC processing gravitates to mini-datacenters at Edge
Pushing Compute to Edge
Industry Trend

– Moving compute closer to where data is
 – Transferring large amounts of data produced by IoT devices is too expensive
 – Decision making must occur in real time, transfers take too long
 – AI, Big Data and HPC processing gravitates to mini-datacenters at Edge

– What happens to data & results produced at Edge?
 – Valuable IoT data as well as results should be preserved
 – Typically this means copying to one or more locations
 – Key to organizing and optimizing this process is distributed metadata
 – Workflow managers and users query metadata & schedule data movement in dormant form
Pushing Compute to Edge
Industry Trend

– Moving compute closer to where data is
 – Transferring large amounts of data produced by IoT devices is too expensive
 – Decision making must occur in real time, transfers take too long
 – AI, Big Data and HPC processing gravitates to mini-datacenters at Edge

– What happens to data & results produced at Edge?
 – Valuable IoT data as well as results should be preserved
 – Typically this means copying to one or more locations
 – Key to organizing and optimizing this process is distributed metadata
 – Workflow managers and users query metadata & schedule data movement in dormant form

– POSIX is still dominant access method in HPC
 – Typically, not 100% compliant – consistency optimized for performance
 – Significant dependency of codes on POSIX semantics

– Non-HPC applications store data differently
 – Buckets of objects in cloud, or S3-API
 – Emergence of Data Lakes
Pushing Compute to Edge
Industry Trend

– Moving compute closer to where data is
 – Transferring large amounts of data produced by IoT devices is too expensive
 – Decision making must occur in real time, transfers take too long
 – AI, Big Data and HPC processing gravitates to mini-datacenters at Edge

– What happens to data & results produced at Edge?
 – Valuable IoT data as well as results should be preserved
 – Typically this means copying to one or more locations
 – Key to organizing and optimizing this process is distributed metadata
 – Workflow managers and users query metadata & schedule data movement in dormant form

– POSIX is still dominant access method in HPC
 – Typically, not 100% compliant – consistency optimized for performance
 – Significant dependency of codes on POSIX semantics

– Non-HPC applications store data differently
 – Buckets of objects in cloud, or S3-API
 – Emergence of Data Lakes

– Moving POSIX data
 – Better done in dormant form where it is immutable
 – Once local to data center, data can be staged as POSIX and computed on
Data Management
What Challenges does it Solve?

- **Too much data**
 - 1PB or more of unstructured file data
 - Need simple & cost-effective storage or backup solution

- **Too many files**
 - Billions of files that require periodic movement
 - Locate & construct datasets based on workflow

- **Need for Speed**
 - Workflow requires high bandwidth or I/O rate
 - HPC, data analytics or AI clusters need faster storage
Introducing Data Management Framework
Active & Dormant Data Forms

Active Tier
Hot Data: Performance

HPC/Al Compute Cluster

High-Performance Storage
- All-Flash File System
- Parallel File Systems
- Scale-out NAS & Object Storage

Dormant Tier
Cold Data: Capacity

HPE Data Management Framework
Tiered data management
- Tape
- DMF zero watt storage
- Object Storage & Cloud

Hewlett Packard Enterprise
Data Management Framework
Technology Highlights

- What is DMF?
 - Data Management hub encompassing entire data life cycle
 - Policy-driven POSIX data movement & tiering solution for tape, disk and cloud
 - Scalable metadata capture & search engine based on Big Data technology
 - Scalable parallel data transfer engine optimized for backend

- Brief history of the product

Data Migration Facility
 - Cray + SGI

DMF 1.0-2.5
 - Cray

DMF 2.6-3.11
 - SGI

DMF 4.0-6.9
 - SGI

Data Management Framework
 - HPE

DMF Suite (7.1)
 - HPE
File System Management
What Can DMF 7 Do?

- Maintain namespace reflection with file and directory metadata that can be queried independently of filesystem or data
- Transparently migrate & recall files on Lustre, HPE XFS and other parallel filesystems to and from versioned backend store
- De-stage & stage files and directories, including all metadata, among managed namespaces
- Recover files, directories and entire file systems, replacing backups
- Store files in a “dormant” form without file system representation
- Construct and manage datasets based on file & directory metadata, including extended attributes
- Stage datasets just-in-time on demand via API or HPC job scheduler
- Tier, copy or move datasets according to policy or workflow
Data management flexibility and precision with extensible metadata

- DMF v7 is based on scalable metadata repository
- Repository functions as a long term data store for information about file system structure, attributes, contents and evolution over time
- Metadata repository supports POSIX extended attributes on files and directories, e.g. project name, project ID, etc.
- Queries can be run against metadata including extended attributes for precise and flexible selection of files, e.g. data set creation
- Additionally, policies can be run against the results of metadata queries for data movement, archiving, etc.
DMF can provide backup, disaster recovery and high-performance tiered storage for user namespaces.

Data staging to WORK and BURST is orchestrated by DMF.
Transition to New Technology

- Manage introduction of new storage technologies over time without disruption
 - Seamlessly manage migration, validation and consolidation of massive data sets
 - Perform migration over period of weeks or months with no impact to user data access
 - Stage managed data to burst buffers or all-flash filesystems

HPC Compute Nodes

High-Performance File System & Storage

DMF Policy-based Data Management

Tape Storage

Zero Watt Storage

On-Premise Object Storage Or Off-Site Cloud

Next Generation Storage

All-Flash File Systems & Burst Buffers

Zero Watt Storage
DMF 7 Software Architecture
Designed for Scalability

State-of-art open source components
- Kafka for Changelog processing
- Cassandra for Scalable Metadata
- Mesos for Task Scheduling
- Spark for Query Engine
- Zookeeper for Configuration
- Containerized Components
- Dedicated Components per Filesystem
- Component Level HA
Solution Scaling & Extensibility
Unified Scalable Front-End

- DMF 7 has a unified scalable front end for Lustre, HPE XFS and other filesystems (e.g. GPFS)
- Same Query and Policy engine for the all filesystem types
- Same DMF CLI for all filesystem types
- Lustre lfs hsm commands are supported along with the native DMF CLI
DMF is certified with libraries from HPE, as well as Spectra Logic, IBM and Oracle (StorageTek)
- Streams to tape drive at native rates, even for small files
- Block ID positioning for fast seek
- Support for latest LTO-8 and Enterprise-class drive technology
- Advanced feature support for accelerated retrieval and automated library management
- Supports Data Integrity Verification (DIV) and Logical Block Protection (LBP) available with Oracle T10k and IBM LTO7 drives
Zero Watt Storage | **High-Density Storage for DMF**
Performance-Oriented & Power-Managed

Hardware-with-software solution optimized for use with the HPE DMF data management platform

Cost-optimized
= Total cost of storage competitive with Tape and lower than Cloud

High Performance
disk based tier provides instant access to first byte and high throughput streaming

On-premise
storage tier which can be used as a capacity storage tier as well as a fast mount cache or “relief” to RAID arrays
Solution Scaling & High Availability

- DMF can scale by adding nodes that perform the required roles
 - Add nodes that are DMF database servers to scale metadata capability
 - Add nodes that are DMF movers to scale data migration capability
- Example of large Lustre configuration
 - Five nodes each provide the DMF database server. Three of those nodes also act as the DMF core server
 - Six nodes are the DMF movers
Design of Lustre Tiering to SES

Target: 10-20GB/s

System Components:

- **Lustre Cluster(s)**
 - DMF 1
 - DMF 2
 - DMF 3
 - DMF 4
 - DMF 5
 - Mover 1
 - Mover 2
 - Mover 3
 - Mover 4

- **SUSE Enterprise Storage**
 - RGW 1
 - RGW 2
 - RGW 3
 - RGW 4
 - RGW 5
 - RGW 6

- **Infiniband 100gE**
DMF7 S3 Mover Performance
Four DL360 Mover Nodes | Lustre to SES
Summary | DMF 7

- **Tiered Storage**
 - Scalable storage tiering and backup
 - High-latency media such as tape and cloud

- **Metadata Search**
 - Locate, select and move large groups of files
 - Standard and user-assigned attributes

- **Flash Scratch**
 - Right-sized, flash-based, “burst buffer” namespaces
 - High throughput and millions of IOPS
Thank you

kirill.malkin@hpe.com