
Moving from Extreme Scale Data to
Extreme Scale Metadata Concerns:

It’s About Time!

Gary Grider
HPC Division Leader, LANL/US DOE

2018
Subset of LA-UR-18-24612

EMC3

What is Los Alamos

2

Eight Decades of Production Weapons Computing
to Keep the Nation Safe

CM-2IBM Stretch CDC Cray 1 Cray X/YManiac

CM-5 SGI Blue Mountain DEC/HP Q IBM Cell Roadrunner Cray XE Cielo

Cray Intel KNL Trinity Ising DWave
Cross Roads

LANL HPC History Project (80k artifacts) Joint
work with U Minn Babbage Institute

4

Some Storage Products You May Not Realize Were
Funded/Heavily Influenced by DOE/LANL

Data Warp

IBM
Photo-
store

An example of metadata scaling: MarFS Scaling

Striping across 1 to X
Object Repos

Scaling test on our retired Cielo machine:
835M File Inserts/sec Stat single file < 1 millisecond
> 1 trillion files in the same directory

Hopefully we have whipped the scalable parallel data
into submission on to Metadata pursuits

DeltaFS
A File System Service for

Simulation Science

Best Paper SC18

HXHIM

Indexing for Scientific Data
GUFI

Fast Userspace Metadata Query

R&D100 Award Disruptor

A dynamically loadable namespace – DeltaFS
Lets make metadata scale with the application!

HXHIM

Indexing for Scientific Data

GUFI
Fast Userspace Metadata Query

DeltaFS
A File System Service for

Simulation Science

Brief VPIC Overview

• Particle-in-cell MPI code (scales
to ~100K processes)
• Fixed mesh range assigned to

each process
• 32 – 64 Byte particles
• Particles move frequently

between 10’s of thousands of
processes

• Million particles per node
(Trillion particle in target
simulation)

• Interesting particles identified at
simulation end

DeltaFS
App2

compute nodes w/ fast interconnect
(10,000+)

storage nodes
(100+)

head node

I/O service nodes
(10+)

Lustre Metadata

Object Storage

DeltaFS
App1

IndexFS
App

Lustre
App

RPC

RPC

DeltaFS
App3

Partitioned IndexFS

Brief DeltaFS Overview

Transient FS Servers

Persistent FS Servers

Every process:
• Runs a linkable KVS in the app that looks like a file system

(IndexFS) (LevelDB)
• “Checks Out” its namespace for the particles files it will

hold – loads a LevelDB SSTable with hundreds of
thousands of ”particle files” time stamp records.

• When Storing article records are sent to the appropriate
“file”

• This is writing data to a 10’s of thousands distributed KVS

Tracking the Highest Energy Particles
Recall the intent is 1 Trillion particles
These thousand particles are interesting, where have they been?

Collaboration of CMU, LANL, ANL, HDF Group
(papers at PDSW 15, PDSW 17, SC18)

VPIC Particle Dump Size VPIC Particle Trajectory Query

Application thought it was writing/reading from 1 file per trillion particles
but really was writing records to massive parallel distributed KVS!

Today we are getting like 8 Billion Particle File Ops/Sec. (yes Billion)

Isn’t 8 Billion Metadata ops/sec good enough? Well maybe, but
that was low dimensional Metadata. What about higher dimensional
Metadata?

Now that I know “where the interesting particles were” what was going on around those
interesting particles? MDHIM->XDHIM (Thank you to
DoD and DoE ECP funding)

GUFI
Fast Userspace Metadata Query

DeltaFS
A File System Service for Simulation Science

HXHIM

Indexing for Scientific Data

MDHIM/XDHIM (why make100 thousand KVS’s look like one)

An application linkable parallel KVS Framework
KVS is linked in the application, bulk put/get ops, uses key range sharding and
server side stored procedures, X Dimensional Sharded Index (Hexastore 6
dimensional linkable KVS is currently in use)

HXHIM – Indexing for Unstructured Meshes

• How do you store/represent an AMR mesh?

• (What is AMR and Why Do We Care?)

• In memory, dynamic tree and nested list structures are common

How many rows are in each of these columns?
(For that matter, how many columns are in each of these columns?!)
How do you store this kind of time series data in a usable form?

• Key-value exposes the data structures underlying most FS

• Key-value allows fine-grained data annotation

• Need to add some HPC research to make efficient for HPC platforms

• Mercury RPC and Margo (lightweight IO threads) for platform services

• Multidimensional Hashing Indexing Middleware

HXHIM Mesh Storage Example

• If “position” in the mesh is the key, and you keep subdividing the key, how do
you have a reasonable key structure

• Old trick using hierarchy of keys (borrow from Farsite FS - Microsoft)

Subject Predicate Object

mesh name “My Mesh”

sim timestep 3.0

c0 position [0.0,0.0]

c1 position [0.1,0.0]

c2 position [0.0,0.1]

c3.0 position [0.1,0.1]

c3.1.0 position [0.15,0.1]

c3.1.1 position [0.175,0.1]

c3.1.2 position [0.125,0.15]

c3.1.3 position [0.125,0.125]

c3.2 position [0.1,0.15]

Sample Query: Tracking a Wave thru Time

En
er

gy

Time

Position

En
er

gy

Peak A
Peak B

Po
si

ti
o

n

Time

Peak B

Peak A

• A fast multi-dimensional index

• Time is discretized separately (indexing not required)

• Energy and position must both be indexed (and not trivially)
• Energy extrema search is worse than VPIC example!

• Efficient filtering for contiguity!
• We could probably work around most of these problems, but level arrays will always convert

spatially contiguous workloads into disjoint query sets

• Neighbor lists won’t limit the pointer chasing

• Why do I think a Key-Value organization can do better?

Range-based Iteration with Stored Procedures

• Advantages of Key-Value Organization

• Decouples file size, I/O size from data set size (efficient I/O)

• Keyspace dimension can change dynamically

• Leverage naming technique described by Farsite FS

• Supports iteration across multiple dimensions simultaneously

• In-situ rather than post-hoc

• Advantages of client-server architectures

• Even with the above we can’t accomplish what we need

• Stored procedures to identify extrema in-situ

How do we ever find anything in our trillions of files?
GUFI Grand Unified File Index

HXHIM

Indexing for Scientific Data

DeltaFS
A File System Service for

Simulation Science

GUFI
Fast Userspace Metadata Query

Motivation

• Many layers of storage at LANL

• By design – users would have us only buying storage if we used
HSMs

• Data management by users is driven by need, sporadically

• Users go find unneeded data and delete, if prodded

• Users have no easy way to find particular datasets unless they
have a good hierarchy or they remember where they put it

• Users have bad memories and bad hierarchies…(you can see
where this leads)

• ...lower (longer) tiers of storage systems accumulate cruft over
time

GUFI Goals

• Unified index over home, project, scratch, campaign, and archive
• Metadata only with extended attribute support
• Shared index for users and admins
• Parallel search capabilities that are very fast (minutes for billions of

files/dirs)
• Search results can appear as a mounted File System
• Full/Incremental update from sources with reasonable update

time/annoyance
• Leverage existing tech as much as possible both hdwr and software:

flash, threads, clusters, sql as part of the interface, commercial db tech, commercial indexing
systems, commercial file system tech, threading/parallel process/node run times, src file system
full/incremental capture capabilities, posix tree attributes (permissions, hierarchy representation,
etc.), open source/agnostic to leveraged parts where possible.

• Simple so that an admin can easily understand/enhance/troubleshoot

• Why not a flat namespace?
• Performance is great, but…Rename high in the tree is terribly costly
• Security becomes a nightmare if users/admins can access the

namespace

GUFI Prototype

SystemA-namespaceA
/search/scratch2/ProjectA

SystemA-namespaceB
/search/scratch2/ProjectB

SystemB-namespaceA
/search/campaign/ProjectB

DirA

db.db
-entries
-dir summary
-tree summary

/search

DirA DirADirB DirBDirCDirB

DirA DirB

DirA DirB

-Dir-Summary –
DB with summary of this directory

-Tree-Summary –
DB with summary of the tree below
optional can be placed anywhere

-Entries –
DB with name/stat/linkname/xattr info
for each file or link

-Tree-Summary
optional and can be
placed anywhere in
the tree

Process/Node Parallelism for different
parts of the tree, within each system-
namespace combination use thread
based parallelism

db.db
-entries
-dir summary
-tree summary

db.db
-entries
-dir summary
-tree summary

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

db.db
-entries
-dirsum

Programs Included / In Progress

• DFW – depth first walker, prints pinode, inode, path, attrs, xattrs

• BFW – breadth first walker, prints pinode, inode, path, attrs, xattrs

• BFWI – breadth first walker to create GUFI index tree from source tree

• BFMI – walk Robinhood MySQL and list tree and/or create GUFI index tree

• BFTI – breadth first walker that summarizes a GUFI tree from a source path down,
can create treesummary index of that info

• BFQ – breadth first walker query that queries GUFI index tree

• Specify SQL for treesummary, directorysummary, and entries DBs

• BFFUSE – FUSE interface to run POSIX md tools on a GUFI search result

• Querydb – dumps treesummary, directorysummary, and optional entry databases
given a directory in GUFI as input

• Programs to update, incremental update (in progress):

• Lustre, GPFS, HPSS

Early performance indicators

• All tests performed on a 2014 Macbook (quad core + SSD)

• No tree indexes used

• ~136k directories, mostly small directories, 10 1M entry dirs, 20
100K size dirs, and 10 20M size dirs

• ~250M files total represented

• Search of all files: 2m10s (~1.75M files/sec)

• Search of all files and dirs: 2m19s (~1.63 M entries/sec)

• Search of all files and dirs, but exclude some very large dirs: 1m18s

• Search of all files and dirs, but exclude all < 1000 file directories:
1m59s

• …on a laptop!

Open Source
BSD License
Partners Welcome

https://github.com/mar-file-system/marfs
https://github.com/pftool/pftool
https://github.com/mar-file-system/GUFI
https://github.com/mar-file-system/erasureUtils

Thanks to all that
participated in this work

Thanks For Your Attention

https://github.com/mar-file-system/marfs
https://github.com/pftool/pftool
https://github.com/mar-file-system/GUFI

