Moving from Extreme Scale Data to
Extreme Scale Metadata Concerns:
It’s About Time!

Gary Grider
HPC Division Leader, LANL/US DOE
2018

Subset of LA-UR-18-24612

» Los Alamos

NATIONAL LABORATORY
EST.1943

| U R I «alv
N A4

What is Los Alamos

» Los Alamos
NATIONAL LABORATORY
EST.1943

Eight Decades of Production Weapons Computing
to Keep the Nation Safe

Maniac IBM Stretch

e 1 L. G
= WA

Cross Roads

CROSS TROADS

An APEX Collaboration

LANL HPC History Project (80k artifacts) Joint
work with U Minn Babbage Institute

A,

TWX-910-988.17 ¢
BRECOO S SR TTRY

0S ALARMOS SCIEN IFIC LABORATORY University of California

— {Coxtracy W-7405-25c-36)
DEPARTMENT OF SUPPLY AND PROPERTY

. P.O, BOX 990
LOS ALAMOS
NEW MEXICO

August 19, 1975 AD
Mr. Seymour Cray
Cray Research, Inc.
P. O, Box 169
Chippewa Falls, WI 54729

Dear Mr. Cray:

This is to advise you that the Los Alamos Scientific Laboratory of the University
of California is interested in acquiring the first Cray-1 computer, scheduled for
delivery in November 1975, to handle calculational requirements beyond the
capability of our presently-installed computers.

oﬁ% Alamos 'ﬁ’i

NATIONAL LABORATORY
EST.1943

= E—1

-

,-,‘f”/‘"&\
S=S0N
L3 14

Some Storage Products You May Not Realize Were
Funded/Heavily Influenced by DOE/LANL

=
Lu-stre-
Data Warp
@ Un.I!ZS,,ee
@ ceph
TINFINITE
Y Tokutek LS e

ﬁ) x_-_‘f’.«"f"?g‘x\x
> Los Alamos 1 mﬂ

AAAAAAAAAAAAAAAAAA

An example of metadata scaling: MarFS Scaling

£,
Namespace Parss Name.sp.ace
roject ir roject ir
ProjectA Di lWG ProjectN Di

DirA.A . . DirA.A -
m
DirA.A._J DirA.A.B e DirA.A.A| DirA.A.B
T — Bag f; e —
DirA.A.A.A - " || DirA.A.AA -
C
e
S

Namespaces

MDS holds

Directory ~ PFS PEs || PES I/ PFS i PFS | PFS | PFS
MDS MDS MDS

Metadata MDS mMbs |l MDs MDS MDS
A. A.M N N.1 N2 | N.M

A A1l 7
N X M MDS File Systems F"eme]
(for metadata only) over M multiple MDS

ni Object Packed) VUl g

File Object File Object Repo A @ VeV Obiject File Object Repo X
Scaling test on our retired Cielo machine: Striping across 1 to X o
835M File Inserts/sec Stat single file < 1 millisecond Object Repos R

> 1 trillion files in the same directory e

Hopefully we have whipped the scalable parallel data
into submission on to Metadata pursuits

DeltaFS

A File System Service for
Simulation Science

Best Paper SC18

AN IM

Mulidimensional Hashed Indexed Middleware

HXHIM GUFI

Indexing for Scientific Data Fast Userspace Metadata Query

R&D100 Award Disruptor

- Los Alamos)

NATIONAL LABORATORY -
EST.1943

A dynamically loadable namespace — DeltaFS
Lets make metadata scale with the application!

DeltaFS HXHIM GUFI
A File System Service f . C e
éi%uﬁt?gg S‘Z{;"ncfe or Indexing for Scientific Data Fast Userspace Metadata Query

» Los Alamos

NATIONAL LABORATORY
EST.1943

Brief VPIC Overview

Particle-in-cell MPI code (scales
to ~100K processes)

»

Fixed mesh range assigned to

> grid

each process

32 — 64 Byte particles

|__— particles

Particles move frequently
between 10’s of thousands of
processes

Spatial Domain

Interpolate
field efffect

Update
fields

Advance
particles

Accumulate
currents

Million particles per node
(Trillion particle in target
simulation)

Interesting particles identified at
simulation end

EST.1943

Brief DeltaFS Overview

DeltaFS

DeltaFS 1 %

4
i

Persistent FS Servers

/

7{6

ustre Metadata

RV é _/r;ead node

(10,000+)

e
/ m

Transient FS Servers

pute nodes w/ fast interconnect

storage nodes
(100+)

(10+)

Every process:

Runs a linkable KVS in the app that looks like a file system
(IndexFS) (LevelDB)

“Checks Out” its namespace for the particles files it will
hold — loads a LevelDB SSTable with hundreds of
thousands of “particle files” time stamp records.

When Storing article records are sent to the appropriate
“file”

This is writing data to a 10’s of thousands distributed KVS

Tracking the Highest Energy Particles
Recall the intent is 1 Trillion particles
These thousand particles are interesting, where have they been?

P
VPIC Particle Dump Size VPIC Particle Trajectory Query
4096
: 13.5% 1024 1 :
I Bl * m xBaseline «DeltaFS
i eltaFS S 256 +
B 4 x 7
c 135 / PR
5_ 3 - ')*E £ 16 4
- o—
o o4l
o 2 - 13.*0. E
© % Q 1+
= o 134% 13:/ 3 245x Gp5x 932 625x 992x 2221x 4049 51]2x
15.2% 141%.. 130% o e O 025 + - : T T T : T
A e 0.0625 SR S S
| | | | | | | | : T l | l
128 256 512 1024 2048 4096 8192 0.015625
Simulation size (M particles) 496 992 1984 3968 7936 16368 32736 49104

Simulation Size (M Particles)

Collaboration of CMU, LANL, ANL, HDF Group
(papers at PDSW 15, PDSW 17, SC18)

Application thought it was writing/reading from 1 file per trillion particles
but really was writing records to massive parallel distributed KVS!
Today we are getting like 8 Billion Particle File Ops/Sec. (yes Billion) .
/\ ,_—:—'.‘\;
/Lo$ Alamos "_g[l

5555555

Isn’t 8 Billion Metadata ops/sec good enough? Well maybe, but

that was low dimensional Metadata. What about higher dimensional
Metadata?

A
Now that | know “where the interesting particles were” what was going on around tnose
interesting particles? MDHIM->XDHIM (Thank you to

DoD and DoE ECP funding)

A IM

Mub idimensional Hashed Indexed Middleware

DeltaFS GUHXHIM

A File System Service for Simulation Science Fast Usetspleoéngl&badaterdifierata

» Los Alamos

NATIONAL LABORATORY S
EST.1943 4

MDHIM/XDHIM (why make100 thousand KVS’s look like one%
2

v

An application linkable parallel KVS Framework

KVS is linked in the application, bulk put/get ops, uses key range sharding and
server side stored procedures, X Dimensional Sharded Index (Hexastore 6
dimensional linkable KVS is currently in use)

/ App Process \ / App Process \ / App Process \

Tput(s,p,0) Tput(s,p,0) Tput(s,p,0)
Tget(s,p) Tget(s,p) Tget(s,p)

Tdelete(s,p) Tdelete(s,p) Tdelete(s,p)

Margo
Partitioner RPC . Partitioner Partitioner
HXHIM Server Thread HXHIM Serv-e”r Thread { HXHIM Server Thread
LOB ﬁ I LOB B B LOH B
s ae e ——— i)

v i

!

(B BNy | LSM ‘mn

Fast Storage

Partition O Partition 2

2]
- Los Alamos s

5555555

HXHIM — Indexing for Unstructured Meshes

* How do you store/represent an AMR mesh?
* (What is AMR and Why Do We Care?)

| i
it

How many rows are in each of these columns?
(For that matter, how many columns are in each of these columns?!)
How do you store this kind of time series data in a usable form?

* Key-value exposes the data structures underlying most FS

* Key-value allows fine-grained data annotation

* Need to add some HPC research to make efficient for HPC platforms
e Mercury RPC and Margo (lightweight IO threads) for platform services
e Multidimensional Hashing Indexing Middleware

» Los Alamos

NATIONAL LABORATORY
EST.1943

T LT TTT
T

J’g‘

HXHIM Mesh Storage Example

A,

* If “position” in the mesh is the key, and you keep subdividing the key, how do

you have a reasonable key structure

e Old trick using hierarchy of keys (borrow from Farsite FS - Microsoft)

Subject | predicate | Object

EST.1943

mesh

sim

cO

cl

c2

c3.0

c3.1.

c3.1.

c3.1.

c3.1.

c3.2

- Los Alamos

NATIONAL LABORATORY

name
timestep
position
position
position
position
position
position
position
position

position

“My Mesh”

3.0

[0.15,0.1]
[0.175,0.1]
[0.125,0.15]
[0.125,0.125]

[0.1,0.15]

TP
TN

o~
TR

Sample Query: Tracking a Wave thru Time

fi

Time

Position
)
Q
~

\)\:

-

D

Q

~

o

Time
A fast multi-dimensional index
* Time is discretized separately (indexing not required)

* Energy and position must both be indexed (and not trivially)
* Energy extrema search is worse than VPIC example!
» Efficient filtering for contiguity!

* We could probably work around most of these problems, but level arrays will always convert
spatially contiguous workloads into disjoint query sets

* Neighbor lists won’t limit the pointer chasing

* Why do | think a Key-Value organization can do better?

A i "lil

M
*Los Alamos s

Range-based Iteration with Stored Procedures

- Advantages of Key-Value Organization
* Decouples file size, 1/0 size from data set size (efficient 1/0)
* Keyspace dimension can change dynamically
* Leverage naming technique described by Farsite FS
e Supports iteration across multiple dimensions simultaneously
* In-situ rather than post-hoc
* Advantages of client-server architectures
* Even with the above we can’t accomplish what we need
 Stored procedures to identify extrema in-situ

How do we ever find anything in our trillions of files?
GUFI Grand Unified File Index

c)

GUFI

Fast Userspace Metadata Query

e{?;sAlamos @U

AAAAAAAAAAAAAAAAAA
EST.1943

Motivation -

 Many layers of storage at LANL

* By design — users would have us only buying storage if we used
HSMs

* Data management by users is driven by need, sporadically
e Users go find unneeded data and delete, if prodded

e Users have no easy way to find particular datasets unless they
have a good hierarchy or they remember where they put it

* Users have bad memories and bad hierarchies...(you can see
where this leads)

* ...lower (longer) tiers of storage systems accumulate cruft over
time

AAAAAAAAAAAAAAAAAA

GUFI Goals

Unified index over home, project, scratch, campaign, and archive
Metadata only with extended attribute support
Shared index for users and admins

Parallel search capabilities that are very fast (minutes for billions of
files/dirs)
Search results can appear as a mounted File System

Full/Incremental update from sources with reasonable update
time/annoyance

Leverage existing tech as much as possible both hdwr and software:
flash, threads, clusters, sql as part of the interface, commercial db tech, commercial indexing
systems, commercial file system tech, threading/parallel process/node run times, src file system
full/incremental capture capabilities, posix tree attributes (permissions, hierarchy representation,
etc.), open source/agnostic to leveraged parts where possible.

Simple so that an admin can easily understand/enhance/troubleshoot

Why not a flat namespace?
* Performance is great, but...Rename high in the tree is terribly costly

» Security becomes a nightmare if users/admins can access the
namespace

NATIONAL LABORATORY

EST.1943

»

/Los Alamos . __;?7!'

GUFI Prototype

/'\
/s?a rch ¢
%) "
/SystemA-namespaceA \ SystemA-namespaceB ﬁ/stemB—namespaceA \
/search/scratch2/ProjectA /search/scratch2/ProjectB /search/campaign/ProjectB
db.db db.db db.db
-entries -entries -entries
-dir summary -dir summary -dir summary
-tree summary -tree summary -tree summary
| | | | N I | N
DirA DirB DirA DirB DirC DirA DirB
db.db db.db db.db db.db db.db cb.cb db.db
-entries -entries -entries -entries “ETITE: _Z. ? -entrieg
Qrsum _dirsy -dirsum s -dirsum \ irsum -dl?
| |
DirA DirB -Tree-Summary
_Dir-Summary — db.db db.db optional and can be
DB with summary of this directory B -entries placed anywhere in
Tree-Summary — -dirsum -dirsum the tree
DB with summary of the tree below ‘
tional be placed h
_Enfr?e;oja can be placed anywhere DirA DirB Process/Node Parallelism for different
DB with name/stat/linkname/xattr info parts of the tree, ‘_N'th_m each system-
for each file or link db.db db.db namespace combination use thread
-entries —entries based parallelism
-dirsum -dirsum

na

TIFE

TN

ﬁ m
2

[2

———

» Los Alamos |

NATIONAL LABORATORY ‘:?%'
s

EST.1943

Programs Included / In Progress

DFW — depth first walker, prints pinode, inode, path, attrs, xattrs

BFW — breadth first walker, prints pinode, inode, path, attrs, xattrs

BFW!I — breadth first walker to create GUFI index tree from source tree
BFMI — walk Robinhood MySQL and list tree and/or create GUFI index tree

BFTI — breadth first walker that summarizes a GUFI tree from a source path down,
can create treesummary index of that info

BFQ — breadth first walker query that queries GUFI index tree
» Specify SQL for treesummary, directorysummary, and entries DBs
BFFUSE — FUSE interface to run POSIX md tools on a GUFI search result

Querydb — dumps treesummary, directorysummary, and optional entry databases
given a directory in GUFI as input

Programs to update, incremental update (in progress):
* Lustre, GPFS, HPSS

AAAAAAAAAAAAAAAAAA

Early performance indicators

All tests performed on a 2014 Macbook (quad core + SSD)

No tree indexes used

~136k directories, mostly small directories, 10 1M entry dirs, 20
100K size dirs, and 10 20M size dirs

~250M files total represented

Search of all files: 2m10s (~1.75M files/sec)

 Search of all files and dirs: 2m19s (~1.63 M entries/sec)

* Search of all files and dirs, but exclude some very large dirs: 1m18s

e Search of all files and dirs, but exclude all < 1000 file directories:
1mb59s

 ...0n alaptop!

2>
>
Q
3
a
| %ﬁﬁs\

EEEEEEEE

Open Source
BSD License
Partners Welcome

e

https://github.com/mar-file-system/marfs
https://github.com/pftool/pftool
https://github.com/mar-file-system/GUFI
https://github.com/mar-file-system/erasureUtil

Thanks to all that
participated in this work i i

Thanks For Your Attention

!!!!!!!

https://github.com/mar-file-system/marfs
https://github.com/pftool/pftool
https://github.com/mar-file-system/GUFI

