HPC in Industry

Brendan McGinty
NCSA Industry Director
NCSA goal: 6 months ahead of competition

Industry Dedicated
• Technical Teams
• HPC Resources
• Business Leadership and Project Management

Tradition
• Industry as a part of NCSA’s mission for > 30 years

Culture
• Work at industrial pace with NDAs
• Deliver on time and under budget

Largest Industrial HPC Program in the World
NCSA Industry Technical Team Expertise

• Modeling and Simulation
• Bioinformatics and Genomics
• “Big” Data Analytics, GIS, and AI
• Code Profiling and Optimization
• Rapid User Support and Domain/HPC Training
• Cyber Infrastructure and Security
• Visualization
• Much more at NCSA and the University of Illinois
Industrial Data Analytics Group

Expertise

- Data analysis and management on massive scale
- In-memory data analytics
- Industrial applications of machine learning
- Converge of artificial intelligence with high-performance computing
- Geographic Information System (GIS) for spatial data

Current Projects

- **Pharmaceutical**: Drug discovery, side effect analysis
- **Agriculture**: Predicting crop production, crop disease
- **Energy**: Manufacturing and operational optimizations using AI
- **Insurance**: Analyzing insurance policies, cost control
- **Engineering**: Re-engineering workflows, simulating operations
- **Manufacturing**: Smart manufacturing, quality assurance, supply-demand control
- **Finance**: Decision-making on loans, predicting customer’s credibility

Dora Cai
Technical Program Manager
doracai@Illinois.edu
Forge – The HPC Environment for Industry

- **Latest and best**
 - Computing (Intel/Skylake 192-256 GB)
 - In-memory “big” data analytics (SPARK)
 - GPU driven AI technologies (V100)

- **99% uptime and live upgrades**

- **Development and production workhorse**

- **Rapid user support and advanced consulting**

- **Built exclusively for Industry’s applications and workflows**
National Petascale Computing Facility

World-Class Data Center

- Dept. of Energy-like security
- 88,000 sqft
- 25 MW of power; LEED Gold
- 400+ Gb/sec bandwidth

Hosting Benefits to Industry

- Low-cost power & cooling
- 24/7/365 Help Desk
- Adjacent to and aligned with UIUC Research Park
Four Paradigms in Science and Engineering

1st paradigm: Empirical science

2nd paradigm: Model-based theoretical science

3rd paradigm: Computational science (simulations)

4th paradigm: (Big) data driven science

APL Materials 4, 053208 (2016)
Big Data and HPC Driven Deep Learning

Accuracy Comparison

- Random Forest
- Deep Learning

Runtime Comparison

- Random Forest
- Deep Learning
New iForge V100 GPUs Enable Significantly Faster DL Training and DEM Modeling

TensorFlow CIFAR10 CNN Benchmark
- (32 Layers, 1024 Total Batch Size)
- (the higher, the better)

- **Training Rate (Examples/sec.)**
 - CPU Haswell
 - CPU Skylake
 - 1 V100 GPU
 - 2 V100 GPUs
 - 4 V100 GPUs

EDEM Benchmark
- N=17 million particles
- (the lower, the better)

- **Total Time**
- **Time Without I/O**

Graphs:
- Comparison of training rates and simulation speeds with different configurations of CPUs and GPUs.
Large Scale Statistical HPC Analysis in Agriculture

- Power statistical analysis uses massive data collected from farm field trials to allow an agriculture partner of NCSA to assess quality of their experimental designs.

- NCSA has developed an efficient and scalable implementation in R to perform massive simulation using multi-node parallelization and variable instantiation techniques.

- Our new implementation decreases the size of the program from over 50,000 lines to less than 100 lines, reduces the processing time for a simulation with over 70,000 cases from 175 days (@partner) to less than 3.5 hours (@HPC/iForge).

Simulation Run using Different Number of Nodes on iForge

<table>
<thead>
<tr>
<th>Number of Nodes Used</th>
<th>Run Time (in hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>11.87</td>
</tr>
<tr>
<td>16</td>
<td>9.04</td>
</tr>
<tr>
<td>20</td>
<td>7.32</td>
</tr>
<tr>
<td>24</td>
<td>6.19</td>
</tr>
<tr>
<td>28</td>
<td>5.41</td>
</tr>
<tr>
<td>32</td>
<td>4.79</td>
</tr>
<tr>
<td>36</td>
<td>4.34</td>
</tr>
<tr>
<td>40</td>
<td>3.97</td>
</tr>
<tr>
<td>44</td>
<td>3.66</td>
</tr>
<tr>
<td>48</td>
<td>3.41</td>
</tr>
</tbody>
</table>

Courtesy of Dr. Dora Cai and an Industrial Partner of NCSA.
Reduce Product Cost using AI Predictive Models

- NCSA corporate partner
- Optimize “recipe” using Machine Learning predictive models
- Make the predicted values closer to the real lab test results
- Reduce Mean Absolute Errors (MAE) from 0.73 to 0.43
- **ROI: USD$18M** annually by reducing the product cost

Prediction Values vs. Lab Results

<table>
<thead>
<tr>
<th>Production Run</th>
<th>Non-ML Prediction</th>
<th>ML Prediction</th>
<th>Lab Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>86</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>2</td>
<td>87</td>
<td>89</td>
<td>89</td>
</tr>
<tr>
<td>3</td>
<td>88</td>
<td>88.5</td>
<td>89</td>
</tr>
<tr>
<td>4</td>
<td>87</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>5</td>
<td>88</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>6</td>
<td>87</td>
<td>87.5</td>
<td>87</td>
</tr>
<tr>
<td>7</td>
<td>88</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>8</td>
<td>87</td>
<td>87.5</td>
<td>87</td>
</tr>
<tr>
<td>9</td>
<td>88</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>10</td>
<td>87</td>
<td>87.5</td>
<td>87</td>
</tr>
<tr>
<td>11</td>
<td>88</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>12</td>
<td>87</td>
<td>87.5</td>
<td>87</td>
</tr>
<tr>
<td>13</td>
<td>88</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>14</td>
<td>87</td>
<td>87.5</td>
<td>87</td>
</tr>
</tbody>
</table>

Courtesy of Dr. Dora Cai and an Industrial Partner of NCSA
AI Accelerated Turbulence Modeling

\[b_{ij} = -\frac{v_s S_{ij}}{k} + C_1 \frac{v_l}{\epsilon} \left(2 S_{k\ell} S_{ij} - \frac{2}{3} S_{ii} S_{k\ell} \delta_{ij} \right) \\
+ C_2 \frac{v_l}{\epsilon} (2 R_{ij} S_{ij} + 2 R_{jk} S_{kl}) + C_3 \frac{v_l}{\epsilon} \left(2 R_{ik} R_{jk} - \frac{2}{3} R_{ii} R_{kk} \delta_{ij} \right) \]

Fully connected neural network using invariant tensor from velocity gradient to predict DNS quality of Reynolds stress under the cost of k-\(\epsilon\)!

Courtesy of Dr. Shirui Luo and an Industrial Partner of NCSA
AI Accelerated Topological Optimization

1. Setup the problem geometry in Abaqus/CAE
2. Generate FEM mesh of 1. in Abaqus/CAE
3. Loop over parameters, generate training data
 3.1 Apply BCs and Loads
 3.2 Run Abaqus + Tosca
 3.3 Save Optimal Solution
 3.3 Build a multichannel image representation of 1,2, and 3.1
 3.4 Build a gray scale image of 3.3
4. Train Deep Neural Network model using data generated in 3.3 and 3.4
5. Evaluate accuracy
6. Release model

Ground Truth
Prediction

Courtesy of Diab Abueidda and Dr. Nahil Sobh
Massively Parallel Modeling & ROI

- Reservoir simulation models the complex subsurface flows of fluids in oil and natural gas reservoirs
- Previous runtime: 3.5 months on prem
- Optimized: 10 minutes on Blue Waters
- 716800 MPI processes, a sector world record in 2017 for degree of parallelism

- Minimized costs and environmental impact
- ROI: USD$1+B
Best Practices - for NCSA Industry, anyway...

• It’s about the talent first, compute second
• Be consultative – and listen first!
• Provide custom solutions – no two companies are alike
• Respect their time, or lack thereof
• Leverage resources
 – University (faculty, students, research park, et al.)
 – Collaborators/vendors/partners
 – Other centers (NLs, international SCs)
• There is enough opportunity to go around!
• Never settle: keep pushing, testing, being fearless
HPC in Industry

Brendan McGinity
NCSA Industry Director
bmcginty@illinois.edu
+1 217-722-3430