Software co-design on the road to exascale

Dr Stephen Booth
EPCC Principal Architect

Dr Mark Parsons
EPCC Executive Director
Associate Dean for e-Research

The University of Edinburgh
Overview

It’s the end of the world as we know it …

R.E.M. from the album *Document*

- Where are we today on the road to exascale?
- Why is exascale such a challenge?
- What is the CRESTA project doing to help solve it?
Exascale

• Supercomputers have traditionally undergone geometric growth in performance.
 • Need only look at graphs of the top-500 to see how robust this growth is.
 • Though partly driven by incremental technology developments like process-shrink it is also a self fulfilling prophecy.
 • Industry and consumers expect this growth and do whatever it takes to maintain it.

• Current fastest system is the Sequoia BlueGene/Q @ 20 Pflops
 • First Exascale system expected approx 2020

• Note we say Exascale not Exaflop
 • Total flop rate is just one parameter for a successful machine.
 • Probably not even the most important parameter though it is the easiest to understand.
 • There are many challenges that need to be overcome.
CRESTA

• **Collaborative Research into Exascale Systemware, Tools and Applications**

• Developing techniques and solutions which address the most difficult challenges that computing at the exascale can provide

• Focus is predominately on software not hardware.

• European Commission funded project
 • FP7 project
 • Projects started 1st October 2011, three year project
 • 13 partners, EPCC project coordinator
 • €12 million costs, €8.57 million funding

www.cresta-project.eu
Partnership

- Consortium
- Leading European HPC centres
 - EPCC – Edinburgh, UK
 - HLRS – Stuttgart, Germany
 - CSC – Espoo, Finland
 - PDC – Stockholm, Sweden
- A world leading vendor
 - Cray UK – Reading, UK
- World leading tools providers
 - Technische Universität Dresden (Vampir) – Dresden, Germany
 - Allinea Ltd (DDT) – Warwick, UK
- Exascale application owners and specialists
 - Abo Akademi University – Abo, Finland
 - Jyvaskyla Yliopisto – Jyvaskyla, Finland
 - University College London – London, UK
 - ECMWF – Reading, UK
 - Ecole Centrale Paris – Paris, France
 - DLR – Cologne, Germany
Motivation behind CRESTA

• We are at a complex juncture in the history of supercomputing
• For the past 20 years supercomputing has “hitched a lift” on the microprocessor revolution driven by the PC
• Hardware has been surprisingly stable
• EPCC in 1994 had the 512 processor Cray T3D system
 • 0.0768 TFlops peak
• EPCC in 2010 retired the 2,560 processor IBM HPCx system
 • 15.36 TFlops peak – 200 x faster but only 5 x more processors ...
• The programming models for these systems were very similar
• But today’s systems present a real problem … which the exascale cruelly exposes
What are the challenges?

• DARPA conducted a study on exascale hardware in 2007
 • Work has been continued by the International Exascale Software Project and, most recently, by CRESTA’s first deliverables

• Objective: understand the course of mainstream technology and determine the primary challenges to reaching 1 Exaflop by 2015, or soon thereafter

• They concluded the four key challenges were:
 1. Power consumption
 2. Memory and storage
 3. Application scalability
 4. Resiliency

• See
1: The power problem

- The most power-efficient microprocessors available today deliver ~600 Mflops/W on Linpack
 - XE6 is ~2.2 MW per petaflop/s … or 2.2GW per exaflop/s
- … clearly, we have to do better!
 - DARPA goal: 50 Gflops/W
 - 100x improvement
- But even then
 - That still equates to a 20MW computer
 - A number of US labs are currently putting in 30-40MW machine room power supplies
- The simplest way to reduce power is to reduce the clock rate … problem for us!

Longannet power station: 2.4 GW
Parallel computing today

• The programming model is one of a set distinct memories distributed over homogeneous microprocessors
 • Each microprocessor runs a Unix-like OS

• Data transfers between the processors are managed explicitly by the application

• Almost all programs are written in sequential Fortran or C

• They use MPI (Message Passing Interface) for data transfers between nodes/microprocessors

• Some applications which exploit parallel threads on each microprocessor use the hybrid model
 • Shared memory on the microprocessor, distributed memory beyond
 • This holds promise for many applications, but is still rare
Scaling to very large core counts is possible ...
... but often is not

• For example this typical chemistry code

• This behaviour is caused by the overheads of global communication
Hardware is leaving software behind

- Hardware is leaving many HPC users and codes behind
- Majority of codes scale to less than 512 cores
 - These will soon be desktop systems
- Less than 10 codes in EU today will scale on capability systems with 100,000+ cores
 - HECToR service already has 90,112 cores
 - Germany’s Jugene system already has 294,912 cores
- Many industrial codes scale very poorly – some codes will soon find a laptop processor a challenge!
- Much hope is pinned on accelerator technology
 - But this has its own set of parallelism and programming challenges
 - Many porting projects to GPGPU have taken much longer than expected
 - Part of the solution but not a magic bullet.
Software is leaving algorithms behind

• (Like the OS) few mathematical algorithms have been designed with parallelism in mind
 • … the parallelism is then “just a matter of implementation”
• This approach generates much duplication of effort as components are custom-built for each application
 • … but the years of development and debugging inhibits change and users are reluctant to risk a reduction in scientific output while rewriting takes place
• Strongly believe we are at a “tipping point”
 • Without fundamental algorithmic changes progress in many areas will be limited … and not justify the investment in exascale systems
• This doesn’t just apply to exascale
 • Some codes already fail to scale on an 8 or 16-core desktop system
• And we have a huge skills gap …
DARPA 2007 Aggressive Silicon Strawman

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flops – peak (PF)</td>
<td>997</td>
</tr>
<tr>
<td>- microprocessors</td>
<td>223,872</td>
</tr>
<tr>
<td>- cores/microprocessor</td>
<td>742</td>
</tr>
<tr>
<td>Cache (TB)</td>
<td>37.2</td>
</tr>
<tr>
<td>DRAM (PB)</td>
<td>3.58</td>
</tr>
<tr>
<td>Total power (MW)</td>
<td>66.0</td>
</tr>
<tr>
<td>Memory bandwidth (B/s per flops)</td>
<td>0.0025</td>
</tr>
<tr>
<td>Network bandwidth (B/s per flops)</td>
<td>0.0008</td>
</tr>
</tbody>
</table>

166 million cores !!!
1. Do SOC designs solve the power problem?

- System-On-a-Chip (SOC) designs provide excellent power savings
 - For example processors and GPUs on a single silicon die
 - AMD’s recent APUs for the laptop/netbook market
 - ARM-based tablet processors
- AMD have recently purchased Sea-Micro while Intel have recently purchased the Cray interconnect business
- Almost certainly both vendors intend to embed network hardware on their ever-expanding silicon real estate
 - This makes sense particularly from a power point of view
- At the same time the integration of silicon photonics onto processor dies will happen
 - Certainly all long distance communications will have to be optical
- SOC designs will be key to solving part of the hardware power story
2: Memory and power

- Memory bandwidth has increased ~10x over the past decade
- The energy cost/bit transferred has declined by 2.5x
- … energy cost of driving the memory at full bandwidth has risen 4x
- Memory DIMMs can’t provide bandwidth at acceptable energy costs
- And today’s applications use more memory than ever before

Figure 6.22: Commodity DRAM module power efficiency as a function of bandwidth.
2: Memory performance

- Over the past 30 years DRAM density has increased ~75x faster than bandwidth
- Memory bandwidth and memory power consumption are the fundamental problem for many exascale system designs
- Multicore processors and accelerators only exacerbate this problem
- Novel memory technologies needed
 - The most likely advance is the introduction of 3D silicon stacking
 - Faster (15X) and more power efficient (70%)
 - More esoteric advances include
 - Faster phase-change memory – much more energy efficient)
 - Memristors – interesting but unproven
3. Application scalability

- We have a programmability problem *today* at the Petascale with application scalability …
3. Application scalability

- Today’s maximum per core performance is 10Gflop/s
 - An Exaflop would therefore require 100 million x86 cores
 - No application today will scale remotely close to this level

- Most codes today use traditional programming models
 - Very little desire by applications community to rewrite using new models
 - But this probably what will be required – most application owners will want to approach major changes incrementally

- Currently taking approach of “Offer me solutions, offer me alternatives and I decline” (thanks to R.E.M. for their insight again)

- Performance monitoring and debugging tools - another huge area
 - How do you debug 100 million threads?
 - We’re thinking about this in CRESTA

- Also thinking about pre- and post-processing needs at exascale
3. Applications scalability

- Strong versus weak scaling
 - Weak scaling (problem size varies with machine concurrency) has been the mainstay of parallelism for 30 years
 - Strong scaling (scaling with a fixed problem size) has been hard to find

- For some applications there is no more weak scaling because the system being studied is already large enough
 - Example: classical molecular dynamics for many chemistry applications only requires 100 - 1000 atoms/molecules

- An even larger set is constrained by algorithmic complexity
 - There is simply not enough concurrency in the algorithm
 - Modern hardware – multicore and GPGPUs – are cruelly exposing this

- The numerical core (and probably much more) of many applications will have to be rewritten to achieve exascale performance
4: Resiliency

• An exaflop machine may have more than one million processors
 • If each processor has an MTBF of 10 years
 … then the machine will have a MTBF of ~5 minutes!
• We therefore have to be able to operate it in a way which is resilient to single-node failures
 • Or partial problems with other components e.g. the interconnect
• Unfortunately, most scientific applications today use synchronous algorithms
 • … which halt when something blocks the data flows
• Fault tolerance is not a new problem
 • von Neumann considered this in detail as early computers failed often
• Much work remains to be done
 • This is an area where hardware and software (particularly systemware) co-design are crucial
Hardware co-design

- All vendors have the same hardware challenges
- It would be possible to build an exascale system today … there’s no hardware reason why not
 - Indeed, China announced it will build 2 x 100Pflop systems in next 3 years at the IESP meeting in Japan in April 2012
- But the system will be very difficult to use from a software application point of view … and almost certainly the systemware (OS, compilers, debuggers, etc.) will struggle too
- In CRESTA sees exascale as a **SOFTWARE** challenge
- We’re therefore working from a broad understanding of what exascale hardware will be like and focussing our efforts on software
 - … in this context software is both systemware and applications
Comments on the direction of worldwide HPC

• We need to be very careful that exascale doesn’t become an “Apollo Programme” for HPC
• The need for exascale systems must be driven by science and research challenges
• The desire to build exascale systems mustn’t obscure why we’re building these systems
 • Or the long-suffering tax payer will stop the funding
• The balance of spending between software and hardware seems wrong
 • Far too little is spent on applications – particularly new applications of modelling and simulation
 • Without new applications the number of applications that can execute at the top-end of HPC will dwindle to zero
• We are dangerously close to forgetting why we need the exascale
Key principles of CRESTA

• Two strand project
 • Building and exploring appropriate *systemware* for exascale platforms
 • Enabling a set of key *co-design* applications for exascale

• Co-design is at the heart of the project. Co-design applications:
 • provide guidance and feedback to the systemware development process
 • integrate and benefit from this development in a cyclical process

• Employing both incremental and disruptive solutions
 • Exascale requires both approaches
 • Particularly true for applications at the limit of scaling today
 • Solutions will also help codes scale at the peta- and tera-scales

• Developing the exascale software stack
• Committed to open source interfaces, standards and new software
Co-design Applications

- Exceptional group of six applications used by academia and industry to solve critical grand challenge issues
- Applications are either developed in Europe or have a large European user base
- Enabling Europe to be at the forefront of solving world-class science challenges

<table>
<thead>
<tr>
<th>Application</th>
<th>Grand challenge</th>
<th>Partner responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROMACS</td>
<td>Biomolecular systems</td>
<td>KTH (Sweden)</td>
</tr>
<tr>
<td>ELMFIRE</td>
<td>Fusion energy</td>
<td>ABO/ JYU (Finland)</td>
</tr>
<tr>
<td>HemeLB</td>
<td>Virtual Physiological Human</td>
<td>UCL (UK)</td>
</tr>
<tr>
<td>IFS</td>
<td>Numerical weather prediction</td>
<td>ECMWF (International)</td>
</tr>
<tr>
<td>OpenFOAM</td>
<td>Engineering</td>
<td>EPCC / HLRS / ECP</td>
</tr>
<tr>
<td>Nek5000</td>
<td>Engineering</td>
<td>KTH (Sweden)</td>
</tr>
</tbody>
</table>
Systemware

• Systemware is the software components required for grand challenge applications to exploit future exascale platforms

• Consists of
 • Underpinning and cross cutting technologies
 • Operating systems, fault tolerance, energy, performance optimisation
 • Development environment
 • Runtime systems, compilers, programming models and languages including domain specific
 • Algorithms and libraries
 • Key numerical algorithms and libraries for exascale
 • Debugging and Application performance tools
 • Very lucky to have world leaders in CRESTA
 • Allinea’s DDT, TUD’s Vampir and KTH’s perfminer
 • Pre- and post- processing of data resulting from simulations
 • Often neglected, hugely important at exascale
Relationship between activities
Enabling and managing co-design

- We have thought hard about how to enable and coordinate co-design within the project
- Crucial we get this right
- But work packages only encourage 1D collaboration
- Co-design in CRESTA is 2D
- We want to work across work packages on specific well-defined challenges
- We want to be able to report the results via the relevant work packages – and learn from them throughout the project
Co-design teams

- These have already been set up.
- Each team has participants from multiple work packages.
- There is always at least one application represented (and often several).
- Each team has produced a short document outlining its membership, goals and challenges.
Co-design teams

<table>
<thead>
<tr>
<th>Co-design Team</th>
<th>Team Leader(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Monitoring for Application Performance Optimization</td>
<td>Michael Schliephake (KTH)</td>
</tr>
<tr>
<td>Runtime-Support for Hybrid Parallelisation</td>
<td>Michael Schliephake (KTH)</td>
</tr>
<tr>
<td>Development Environment</td>
<td>David Lecomber (Allinea)</td>
</tr>
<tr>
<td>Co-array Fortran</td>
<td>George Mozdzynski & Mats Hamrud (ECMWF)</td>
</tr>
<tr>
<td>FFT</td>
<td>Stephen Booth & David Henty (EPCC)</td>
</tr>
<tr>
<td>Linear Solvers and Pre Conditioners</td>
<td>Dmitry Khabi & Timo Krappel (USTUTT)</td>
</tr>
<tr>
<td>Pre-, Post-processing and Rendering and the Applications</td>
<td>Achim Basermann (DLR), James Hetherington (UCL)</td>
</tr>
<tr>
<td>GP-GPU</td>
<td>Alan Gray (EPCC)</td>
</tr>
<tr>
<td>Lattice Boltzmann</td>
<td>Keijo Mattila (JYU)</td>
</tr>
<tr>
<td>Weak-Strong Scaling/Ensemble</td>
<td>Jan Åström, (CSC), Jan Westerholm. (ABO)</td>
</tr>
<tr>
<td>Benchmark Suite</td>
<td>Jeremy Nowell (EPCC)</td>
</tr>
</tbody>
</table>
Conclusions

• CRESTA is one “small” project amongst many that are tackling the exascale challenge

• It’s focus on software co-design is probably unique

• Hardware is slowly moving forward – and will probably deliver the first exascale systems in early 2020’s

• Far too little funding is being focussed on the software side (particularly developing previously infeasible simulations)

• CRESTA’s focus on the exascale software stack (both applications and systemware) is trying to redress this balance

• We need to be brave and plan our disruptive work now – not in 2019!
http://www.cresta-project.eu

It’s the end of the world as we know it
and I feel fine …

R.E.M.