Bigger, Better, Deeper: HPC as a Computational Microscope to Explore Cell Membranes

Mark S.P. Sansom
Department of Biochemistry

• Membrane: the wall around the building…
• Control: entry/exit of materials & information
• Membrane: lipid bilayer + membrane proteins
• Membrane proteins: 20% of genes; 50% of drug targets
Membranes: Proteins + Lipids

- Lipid bilayer: environment for membrane proteins
- Lipid-like drugs: e.g. fingolimod & MS
- Molecular simulations: proteins in a *complex membrane environment*

Complex *mixtures of lipids* in cell membranes
Asymmetric distribution between leaflets
Membrane Proteins: From PDB to MD

- **X-ray structure**: static, average structure at ~100 K, in crystal
- **MD simulation**: nano to microsecond dynamics at ~300 K, in bilayer
- From structure to dynamic behaviour & function in a model cell membrane

KvAP voltage sensor
Sands & Sansom (2007)
Structure 15:235

• Describe the forces on all atoms: $F = -\frac{dU(x)}{dx}$
• Integrate: $F = ma$ (a few million times…)

Lipid/protein interactions
Simulations as a ‘Computational Microscope’

- MD simulations: transplanting a membrane protein structure back into a lipid bilayer
- **Zoom in**: atomistic simulations, structure/function at the nm & ns scales
- **Zoom out**: coarse-grained simulations, membrane behaviour at the µm & µs scales
- Today: focus on membrane protein/lipid interactions; complex & crowded bilayers

TWIK-1 channel hydrophobic gate

Kir channels in a crowded membrane
Fowler et al. (2016) *Soft Matter*

0.14 µm, 55K lipids, 144 proteins
5 µs CG-MD (Martini)
A Pipeline & a Database: MemProtMD

Membrane protein structure \rightarrow Initial CG system \rightarrow CGMD simulations \rightarrow Atomistic membrane protein system \rightarrow Analysis

http://sbcb.bioch.ox.ac.uk/memprotmd
>2000 structures in bilayers
Phil Stansfeld & Tom Newport

Stansfeld et al. (2015)

MscS: stretch activated
Pliotas et al. (2015) Nature SMB
High Throughput Simulations for Functional Annotation

2015
- \(n = 585 \)
- \(n = \exp(a y) \)
- \(a = 0.220 \)
- \(r^2 = 6.83 \)
- expected growth at year 20 (2005)
 - \(a = 0.244, r^2 = 0.42 \)

2016
- 2000 membrane proteins x 1 µs simulation
- 0.2 PB

2020
- 10,000 structures x 1 ms simulation
- 200 PB
ANT1 transporter: selective interactions with anionic cardiolipin (CDL)
PMF calculations: free energy landscapes of protein/lipid interactions
Predictions: strength & specificity of lipid interactions
Larger Scale Simulations of Biomembranes

• Bacterial outer membrane proteins: OMPs
• Physiological degree of protein crowding slows membrane protein & lipid diffusion
Scaling Up to Experimental Sizes

300,000 particles

1.4M particles

22M particles

1 µm

0.5 µm

simulations

experiment

Matthieu Chavent
Anna Duncan
Bacterial Outer Membrane Protein Islands

- Simulations of crowded membranes: OMP clustering & restricted diffusion
- Imaging *in vivo* & *in vitro*: OMP ‘islands’ in outer membrane biogenesis

Matthieu Chavent
Anna Duncan
Colin Kleanthous *et al.*

Dividing *E. coli*: green = new; red = old
Influenza virus: a complex high cholesterol (53%) membrane

- 80 HA + 12 NA + 15 M2; 43000 lipids; microsecond simulations of 5M particles (≡ 20M atoms)
- High cholesterol & glycolipid: diffusion is slow & anomalous ($\alpha = 0.8$) i.e. ‘raft-like’
- Membrane biophysical robustness correlates with virus stability to hostile environments
Combining CryoET & Simulation: HIV-1

- HIV-1 capsid
- Cryo-ET
- Zhao et al. (2013) *Nature*

- Atomistic MD
 - 64M atoms
 - 128,000 cores
 - 5 ns/d

- CG HIV-1
- ~30M particles
- Oxford & UIUC
- Blue Waters, NCSA

- AT-MD
- 120M atoms

- CryoET: overall structure
- X-ray crystallography: protein structures
- Lipidomics: bilayer composition
- MD simulations: integrated model

Tyler Reddy
Juan Perilla (UIUC)
Conclusions & Future Challenges

• Interactions with lipids: simple and complex
• Crowded and complex bilayers: ‘in silico in vivo’
• Simulations to link structural biology of membrane proteins to functional & imaging studies of cell membranes

• Data science challenges: visualization & analysis
• Making simulation data available
• Need for a hierarchy of HPC resources
People, Collaborations, & Funding

Dr Phillips Stansfeld
Dr. Antreas Kalli
Liz Carpenter
Luke Clifton
Stefan Howorka
Yvonne Jones
Colin Kleanthous
Juan Perilla
Carol Robinson
Simon Newstead
Elena Seiradake
Stephen Tucker

Dr Tyler Reddy
Dr Matthieu Chavent
Dr Prafulla Aryal
Dr. Anna Duncan
Jan Domanski
Vishal Mangi
George Hedger
Fiona Naughton
Nicholas Michelarakis
Thomas Newport
Viwan Jarerattanachat
Sarah Beth Amos
Lizzie Jefferys
Qinrui Wang
Gianni Klese
Shanlin Rao
Michael Horrell

Funding
BBSRC
EPSRC/ARCHER
EU
Leverhulme Trust
MRC
STFC/Hartree
UCB
The Wellcome Trust

ARC
ARCHER
PRACE