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ÅDOE SC allocates the vast 
majority of the computing 
and storage resources at 
NERSC 
ïSix program offices allocate 

their base allocations and 
they submit proposals for 
overtargets 

ïDeputy Director of Science 
prioritizes overtarget 
requests  

ÅUsage shifts as DOE 
priorities change 

ÅOver 5000 users and 700 
projects run at NERSC 
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We are the primary computing facility for 

the DOE Office of Science 

2013 Breakdown of Allocations by 
Science Area  



We focus on the scientific impact of our 

users 

- 3 - 

18 Journal Covers in 2013 

Å Over 1900 journal publications in 2013 

Å Simulations at NERSC were key to 3 Nobel 
Prizes (2006 and 2011, 2013). 

Å Data resources and services at NERSC played  
ƛƳǇƻǊǘŀƴǘ ǊƻƭŜ ƛƴ ƻƴŜ ƻŦ {ŎƛŜƴŎŜ aŀƎŀȊƛƴŜΩǎ 
Top Ten Breakthroughs of 2012 τ  the 
ƳŜŀǎǳǊŜƳŜƴǘ ƻŦ ǘƘŜ ɸмо ƴŜǳǘǊƛƴƻ ǿŜŀƪ 
mixing angle. 

Å BOSS measures accuracy of universe to 1%  

Å IceCube Collaboration detection of high 
energy astrophysical neutrinos from outside 
solar system 

ÅCƻǳǊ ƻŦ {ŎƛŜƴŎŜ aŀƎŀȊƛƴŜΩǎ ƛƴǎƛƎƘǘǎ ƻŦ ǘƘŜ ƭŀǎǘ 
decade (3 in genomics, 1 related to cosmic 
microwave background) 



NERSC Today 

  

  

  

  

  

Production Clusters 
Carver, PDSF, JGI,KBASE,HEP 

 14x QDR 

Global 
Scratch  

3.6 PB 
5 x SFA12KE 

/project  

5 PB 
DDN9900 & 
NexSAN 

/home 
250 TB 
NetApp 5460 

50 PB stored, 240 
PB capacity, 20 

years of 
community data 

HPSS 

16 x QDR IB 

2.2 PB Local 
Scratch 
70 GB/s 

6.4 PB Local 
Scratch 

140 GB/s 

16 x FDR IB 

  
Ethernet & 
 IB Fabric 

Science Friendly Security 
Production Monitoring 

Power Efficiency 

WAN 
 

2 x 10 Gb 

1 x 100 Gb 

Software Defined 
 Networking 

  Vis & Analytics    Data Transfer Nodes 
Adv. Arch. Testbeds   Science Gateways 

80 GB/s 

50 GB/s 

5 GB/s 

12 GB/s 

Hopper: 1.3PF, 212 TB RAM 

Edison: >2PF, 333 TB RAM 
 

Cray XE6, 150K Cores 

Cray XC30, ~125K Cores 

- 4 - 



Systems Strategy 

ÅWe have two large systems on the floor to provide 
stability and continuity for users 

ÅOur strategy is: 
ïOpen competition for best solutions 

ïPartnership with NNSA 

ïFocus on the performance of a broad range of applications, not 
synthetic benchmarks 

ïGeneral-purpose architectures are needed in order to support a 
wide range of applications, both large-scale simulations and 
high volumes of smaller simulations 

ïEarlier procurements to influence designs 

ïLeverage Fast Forward and Design Forward 

ïEngage co-design efforts 

ïTransition users to a new manycore architectures 
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ÅProvide a significant increase in computational capabilities 
over the Hopper system, at least 10x on a set of representative 
DOE benchmarks 

ÅPlatform needs to begin to transition users to more energy-
efficient many-core architectures. 

ÅProvide high bandwidth access to existing data stored by 
continuing research projects. 

ÅSystem delivery in the 2015/2016 timeframe 

 

Acquire and deploy HPC resources for the rapidly increasing 
computational demands of DOE SC research community. 

NERSC-8 Mission Need approved in 
November 2012 



Edison, a Cray XC-30 plays a key role in 

NERSCôs strategy 
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ÅNERSC assessed that our broad workload was not ready for GPUs 

and procured Edison, with Ivy Bridge Intel CPUs 

ÅWorkloads that have difficulty moving to NERSC-8 can still work 

productively on Edison while the code is adapted 

ÅIn 2016 Edison will likely provide ~20% of NERSCôs cycles 



Programming Models Strategy 

ÅThe necessary characteristics for broad adoption of 
a new pmodel is 
ïPerformance: At least 10x-50x performance improvement 

ïPortability: Code performs well on multiple platforms 

ïDurability:  Solution must be good for a decade or more 

ïAvailability/Ubiquity: Cannot be a proprietary solution 

ÅOur near-term strategy is 
ïSmooth progression to exascale from a user's point of view 

ïSupport for legacy code, albeit at less than optimal 
performance 

ïSupport for a variety of programming models 

ïSupport optimized libraries 
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Although architecture for NERSC-8 is not yet 

known, trend for all 2015/2016 systems is 

manycore 
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ÅRegardless of processor 
architecture, users will 
need to modify applications 
to achieve performance 
ïExpose more on-node 

parallelism in applications 

ï Increase application 
vectorization capabilities 

ïFor co-processor 
architectures, locality 
directives must be added 

ïHierarchical memory 

 

 NERSC workload has hundreds of codes.  
How will application teams make the transition? 



NERSC App Readiness Team 

Nick Wright  (Co-

Lead) 

Katerina Antypas 

(Co-Lead) 

Harvey Wasserman 

Chemistry 

Brian Austin 

Quantum 

Chemistry 

Zhengji Zhao 

Materials Science 

Jack Deslippe 

Materials Science 

Woo-Sun Yang 

Climate 

Helen He 

Climate 

Matt Cordery 

Climate 

Kirsten Fagnan 

Bio-Informatics 

Jon Rood 

Applied Math/Bio-

informatics 

Christopher Daley 

Astrophysics/Adaptiv

e Mesh 
 

ǒ If you do nothing, your MPI-only code may run 

poorly on future machines. 
 

ǒ NERSC is here to help 
 



NERSCôs highly concentrated workload, 

but astro codes are not 

Å10 codes make up 
50% of the workload 

 

Å25 codes make up 
66% of the workload 
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>500 

Breakdown of Application 
Hours on Hopper 2012 



NERSC Application Readiness Effort 
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ÅNERSC has a robust application transition plan in 
place which will help transition users to the NERSC-8 
architecture 

 
 

 
Vendor 
partner

ships 

NERSC is committed to helping our users make this transition 

Developer 
Workshops 

for 3rd-
Party SW 

Early 
engagement 

with code 
teams 

Leverage 
existing 

communit
y efforts 

Early 
testbeds 
for users Training 

series 
and 

online 
modules 

Postdoc 
Program 



FLASH Case Study 

Christopher Daley 



Case Study on the Xeon-Phi (MIC) 

Architecture 

ωNERSC Testbed Babbage 
ω45 Sandy-bridge nodes with Xeon-Phi Co-processor 
ωEach Xeon-Phi Co-processor has 
ω 60 cores 
ω 4 HW threads per core 
ω 8 GB of memory 

ωMultiple ways to program with co-processor 
ωAs an accelerator 
ωAs a self-hosted processor (ignore Sandy-bridge) 
ωReverse accelerator 

ωWe chose to test as if the Xeon-Phi was a stand 
alone processor because Intel has announced next 
generation will be self-hosted 
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FLASH application readiness 

ωFLASH is an Adaptive Mesh Refinement (AMR) code with 
explicit solvers for hydrodynamics and magneto-
hydrodynamics 

ωParallelized using 
ς MPI domain decomposition AND 

ς OpenMP multithreading over either local domains or over cells in each local 
domain 

ωTarget application is a 3D Sedov explosion problem 
ς A spherical blast wave is evolved over multiple time steps 

ς We test a configuration with a uniform resolution grid (and not AMR) and use 
1003 global cells 

ωThe hydrodynamics solvers perform large stencil 
computations. 

-   - 



Best MIC performance vs host 

-   - 
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Best configuration on 1 MIC card 
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MIC performance study 1: thread 

speedup 
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ω1 MPI rank per MIC 
card and various 
numbers of   
OpenMP threads 

ωEach OpenMP 
thread is placed on a 
separate core 

ω10x thread count 
ideally gives a 10x 
speedup  

ωSpeedup is not ideal 
ς But it is not the main cause of the poor MIC performance 
ς ~70% efficiency @ 12 threads (as would be used with 10 MPI ranks per card) 



Vectorization is another form of on-node 

parallelism 

 

 

 

 

 

 

 

 

 

 

 

  do i = 1, n  

      a(i) = b(i) + c(i)  

  enddo  

Intel Xeon Sandy-Bridge/Ivy-Bridge:      4 Double Precision Ops Concurrently 

Intel Xeon Phi:                   8 Double Precision Ops Concurrently 

NVIDIA Kepler GPUs:      32 SIMT threads 



Things that Kill Vectorization 

Compilers want to ñvectorizeò your loops whenever possible. But 

sometimes they get stumped. Here are a few things that prevent your 

code from vectorizing: 

 
Loop dependency: 

 

 

 
Task forking: 

 

  do i = 1, n  

      a(i) = a(i - 1) + b(i)  

  enddo  

  do i = 1, n  

      if (a(i) < x) cycle  

      ...  

  enddo  



ς The data for 1 grid point is laid out as a structure of fluid fields, e.g. density, 
ǇǊŜǎǎǳǊŜΣ ΧΣ ǘŜƳǇŜǊŀǘǳǊŜ ƴŜȄǘ ǘƻ ŜŀŎƘ ƻǘƘŜǊΥ A(HY_DENS:HY_TEMP) 

ςVectorization can only happen when the same operation is performed on 
multiple fluid fields of 1 grid point! 

-   - 

No vectorization gain! 
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MIC performance study 2: 

vectorization 

ωWe find that most 
time is spent in 
subroutines which 
update fluid state 1 
grid point at a time 



ωMust restructure the code 
- The fluid fields should no longer be next to each other in memory 
- !όI¸ψ59b{ΥI¸ψ¢9atύ ǎƘƻǳƭŘ ōŜŎƻƳŜ !ψŘŜƴǎόмΥbύΣ ΧΣ !ψǘŜƳǇόмΥbύ 

- The 1:N indicates the kernels now operate on N grid points at a time 

ωWe tested these changes on part of a data reconstruction kernel 

-   - 

ωThe new code 
compiled with 
vectorization 
options gives the 
best 
performance on 
3 different 
platforms 
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Enabling vectorization 



ωFLASH on MIC 
ςMPI+OpenMP parallel efficiency ς OK 
ςVectorization ς zero / negative gain ΧƳǳǎǘ ǊŜǎǘǊǳŎǘǳǊŜΗ 
ω Compiler auto-vectorization / vectorization directives do not help the current code 

ωChanges needed to enable vectorization 

ςMake the kernel subroutines operate on multiple grid points at a time 

ς Change the data layout by using a separate array for each fluid field 

ω Effectively a change from array of structures (AofS) to structure of arrays (SofA) 

ωTested these proof-of-concept changes on a reduced hydro kernel 

ςDemonstrated improved performance on Ivy-Bridge, BG/Q and Xeon-Phi platforms 

-   - 

Good Parallel Efficiency AND Vectorization = Good MIC Performance 

Summary 



Burst Buffer 



Burst Buffer 

ÅFlash storage which would act as a cache to improve 
peak performance of the PFS. 
 
 
 
 

 
 

 
ÅFlash is currently as little as 1/6 the cost of disk per 

GB/s bandwidth and has better random access 
characteristics(no seek penalty). 
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Burst Buffer and why weôre 

interested  
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ÅNERSC I/O is bursty 

ïWhile the Filesystem ƛǎ ǊŜƎǳƭŀǊƭȅ ǇǳǎƘŜŘ ǘƻ ƴŜŀǊ ƛǘΩǎ ǇŜŀƪ 
ōŀƴŘǿƛŘǘƘΣ Ƴƻǎǘ ƻŦ ǘƘŜ ǘƛƳŜ ƛǘΩǎ ǳǘƛƭƛȊŀǘƛƻƴ ƛǎ ǿŜƭƭ ōŜƭƻǿ 
ƛǘΩǎ Ŧǳƭƭ ŎŀǇŀōƛƭƛǘȅΦ LŦ ǇŜŀƪ .² ǊŜǉǳƛǊŜƳŜƴǘǎ Ŏŀƴ ōŜ 
adequately met by a flash cache, the file system can be 
more modestly provisioned. 



Thank you 
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Requirements Workshops describe a critical 

need for a significant increase in HPC 

resources 

ÅOne workshop and report 
per office, organized by 
ASCR and NERSC  

ÅCase studies on science 
needs 

ÅEstimated 2016 need over 
47 times Hopper capability 

ÅNERSC-7 will not fulfill 
need 

http://www.nersc.gov/science/requirements-workshops/final-reports/ 

Lead by Richard Gerber and 
Harvey Wasserman 



BerkeleyGW Case Study 

Jack Deslippe 



Case Study: BerkeleyGW 

Description: 

A material science code to compute 

excited state properties of materials. 

Works with many common DFT 

packages. 

 

Algorithms: 

- FFTs (FFTW) 

- Dense Linear Algebra (BLAS / LAPACK 

/ SCALAPACK / ELPA)  

- Large Reduction Loops. 

Silicon Light Absorption vs. 

Photon Energy as Computed in 

BerkeleyGW 



Failure of the MPI-Only Programming Model in BerkeleyGW  

Ấ Big systems require more memory. Cost scales as Natm^2 to store the data. 

 

Ấ In an MPI GW implementation, in practice, to avoid communication, data is duplicated and 

each MPI task has a memory overhead. 

 

Ấ On Hopper, users often forced to use 1 of 24 available cores, in order to provide MPI tasks 

with enough memory.  90% of the computing capability is lost. 

Distributed Data 

Overhead Data 

MPI Task 1 

Distributed Data 

Overhead Data 

MPI Task 2 

Distributed Data 

Overhead Data 

MPI Task 3 

Χ 



Steps to Optimize BerkeleyGW on Xeon-Phi Testbed 

Time/Code-Revision 

(2 Sandy Bridge) 

(1 Xeon-Phi) 

* 

Lo
w

er is B
etter 

1. Refactor to create hierarchical set of loops to be parallelized via MPI, 

OpenMP and Vectorization and to improve memory locality. 

2. Add OpenMP at as high a level as possible. 

3. Make sure large innermost, flop intensive, loops are vectorized  

  * - eliminate spurious logic, some code restructuring simplification and 

other optimization 



Steps to Optimize BerkeleyGW on Xeon-Phi Testbed 

Time/Code-Revision 

1. Refactor to create hierarchical set of loops to be parallelized via MPI, 

OpenMP and Vectorization and to improve memory locality. 

2. Add OpenMP at as high a level as possible. 

3. Make sure large innermost, flop intensive, loops are vectorized  

  * - eliminate spurious logic, some code restructuring simplification and 

other optimization 

(2 Sandy Bridge) 

After optimization, 

4 early Intel Xeon-

Phi cards with 

MPI/OpenMP is 

~1.5X faster than 

32 cores of Intel 

Sandy Bridge on 

test problem. 

(1 Xeon-Phi) 

* 

Lo
w

er is B
etter 



Simplified Final Loop Structure 

!$OMP DO reduction(+:achtemp)  

  do my_igp = 1, ngpown  

 

    ...  

 

    do iw=1,3  

 

      scht=0D0  

      wxt = wx_array(iw)  

 

      do ig = 1, ncouls  

 

        !if (abs(wtilde_array(ig,my_igp) * eps(ig,my_igp)) .lt. TOL) cycle  

 

        wdiff = wxt -  wtilde_array(ig,my_igp)  

        delw = wtilde_array(ig,my_igp) / wdiff  

 

        ...  

 

        scha(ig) = mygpvar1 * aqsntemp(ig) * delw * eps(ig,my_igp)  

 

        scht = scht + scha(ig)  

 

      enddo ! loop over g  

 

      sch_array(iw) = sch_array(iw) + 0.5D0*scht  

 

    enddo  

     

    achtemp(:) = achtemp(:) + sch_array(:) * vcoul(my_igp)  

 

  enddo  



!$OMP DO reduction(+:achtemp)  

  do my_igp = 1, ngpown  

 

    ...  

 

    do iw=1,3  

 

      scht=0D0  

      wxt = wx_array(iw)  

 

      do ig = 1, ncouls  

 

        !if (abs(wtilde_array(ig,my_igp) * eps(ig,my_igp)) .lt. TOL) cycle  

 

        wdiff = wxt -  wtilde_array(ig,my_igp)  

        delw = wtilde_array(ig,my_igp) / wdiff  

 

        ...  

 

        scha(ig) = mygpvar1 * aqsntemp(ig) * delw * eps(ig,my_igp)  

 

        scht = scht + scha(ig)  

 

      enddo ! loop over g  

 

      sch_array(iw) = sch_array(iw) + 0.5D0*scht  

 

    enddo  

     

    achtemp(:) = achtemp(:) + sch_array(:) * vcoul(my_igp)  

 

  enddo  

Simplified Final Loop Structure 

ngpown typically 
ƛƴ мллΩǎ ǘƻ млллǎΦ 
Good for many 
threads. 

ncouls typically in 
1000s - 10,000s. 
Good for 
vectorization. 
5ƻƴΩǘ ƘŀǾŜ ǘƻ 
worry much about 
memory. 
alignment. 

Original inner 
loop. Too small to 
vectorize! 

Attempt to save 
work breaks 
vectorization and 
makes code 
slower. 



Running on Many-Core Xeon-Phi Requires OpenMP Simply 

To Fit Problem in Memory 

#MPI-Tasks x 
#OMP Threads  
= 120, 16 

Lo
w

er is B
etter 



Running on Many-Core Xeon-Phi Requires OpenMP Simply 

To Fit Problem in Memory 

Ấ Example problem cannot fit into memory when using less than 5 OpenMP 
threads per MPI task. 

Ấ Conclusion: you need OpenMP to perform well on Xeon-Phi in practice 
 

Lo
w
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Burst Buffer cont. 

Å NERSC I/O is not well structured 
ï Even after all file system attempts to optimize I/O operations, unaligned, or small I/O 

patterns result in 50% of all I/Os logged by LMT at NERSC being less than the filesystem 
block size. 

ï Given that Lustre is combining sequential small I/O ops into larger ones, this implies that 
these are not in the middle of a larger sequential I/O stream, and require head 
ƳƻǾŜƳŜƴǘ ƛƴ ƻǊŘŜǊ ǘƻ ōŜ ǎŜǊǾƛŎŜŘΣ ŀƴŘ ǿƻǳƭŘ ōŜƴŜŦƛǘ ŦǊƻƳ ŦƭŀǎƘΩǎ ōŜǘǘŜǊ small block, 
and random I/O characteristics vs. disk. 
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Distribution of I/O transactions count 
(Data taken from Mar 1 ς Oct 31, 2013, approx 40% of Hopper raw hours captured) 

Application(client) I/O request sizes Lustre(server) I/O sizes 
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