
Katie Antypas
NERSC-8 Project Manager

NERSC Services Dept. Head

NERSC-8 and

Collaboration

with ACES

- 1 -

HPC User Meeting
April 9, 2014

ÅDOE SC allocates the vast
majority of the computing
and storage resources at
NERSC
ïSix program offices allocate

their base allocations and
they submit proposals for
overtargets

ïDeputy Director of Science
prioritizes overtarget
requests

ÅUsage shifts as DOE
priorities change

ÅOver 5000 users and 700
projects run at NERSC

- 2 -

We are the primary computing facility for

the DOE Office of Science

2013 Breakdown of Allocations by
Science Area

We focus on the scientific impact of our

users

- 3 -

18 Journal Covers in 2013

Å Over 1900 journal publications in 2013

Å Simulations at NERSC were key to 3 Nobel
Prizes (2006 and 2011, 2013).

Å Data resources and services at NERSC played
ƛƳǇƻǊǘŀƴǘ ǊƻƭŜ ƛƴ ƻƴŜ ƻŦ {ŎƛŜƴŎŜ aŀƎŀȊƛƴŜΩǎ
Top Ten Breakthroughs of 2012 τ the
ƳŜŀǎǳǊŜƳŜƴǘ ƻŦ ǘƘŜ ɸмо ƴŜǳǘǊƛƴƻ ǿŜŀƪ
mixing angle.

Å BOSS measures accuracy of universe to 1%

Å IceCube Collaboration detection of high
energy astrophysical neutrinos from outside
solar system

ÅCƻǳǊ ƻŦ {ŎƛŜƴŎŜ aŀƎŀȊƛƴŜΩǎ ƛƴǎƛƎƘǘǎ ƻŦ ǘƘŜ ƭŀǎǘ
decade (3 in genomics, 1 related to cosmic
microwave background)

NERSC Today

Production Clusters
Carver, PDSF, JGI,KBASE,HEP

 14x QDR

Global
Scratch

3.6 PB
5 x SFA12KE

/project

5 PB
DDN9900 &
NexSAN

/home
250 TB
NetApp 5460

50 PB stored, 240
PB capacity, 20

years of
community data

HPSS

16 x QDR IB

2.2 PB Local
Scratch
70 GB/s

6.4 PB Local
Scratch

140 GB/s

16 x FDR IB

Ethernet &
 IB Fabric

Science Friendly Security
Production Monitoring

Power Efficiency

WAN

2 x 10 Gb

1 x 100 Gb

Software Defined
 Networking

 Vis & Analytics Data Transfer Nodes
Adv. Arch. Testbeds Science Gateways

80 GB/s

50 GB/s

5 GB/s

12 GB/s

Hopper: 1.3PF, 212 TB RAM

Edison: >2PF, 333 TB RAM

Cray XE6, 150K Cores

Cray XC30, ~125K Cores

- 4 -

Systems Strategy

ÅWe have two large systems on the floor to provide
stability and continuity for users

ÅOur strategy is:
ïOpen competition for best solutions

ïPartnership with NNSA

ïFocus on the performance of a broad range of applications, not
synthetic benchmarks

ïGeneral-purpose architectures are needed in order to support a
wide range of applications, both large-scale simulations and
high volumes of smaller simulations

ïEarlier procurements to influence designs

ïLeverage Fast Forward and Design Forward

ïEngage co-design efforts

ïTransition users to a new manycore architectures

- 5 -

ÅProvide a significant increase in computational capabilities
over the Hopper system, at least 10x on a set of representative
DOE benchmarks

ÅPlatform needs to begin to transition users to more energy-
efficient many-core architectures.

ÅProvide high bandwidth access to existing data stored by
continuing research projects.

ÅSystem delivery in the 2015/2016 timeframe

Acquire and deploy HPC resources for the rapidly increasing
computational demands of DOE SC research community.

NERSC-8 Mission Need approved in
November 2012

Edison, a Cray XC-30 plays a key role in

NERSCôs strategy

- 7 -

ÅNERSC assessed that our broad workload was not ready for GPUs

and procured Edison, with Ivy Bridge Intel CPUs

ÅWorkloads that have difficulty moving to NERSC-8 can still work

productively on Edison while the code is adapted

ÅIn 2016 Edison will likely provide ~20% of NERSCôs cycles

Programming Models Strategy

ÅThe necessary characteristics for broad adoption of
a new pmodel is
ïPerformance: At least 10x-50x performance improvement

ïPortability: Code performs well on multiple platforms

ïDurability: Solution must be good for a decade or more

ïAvailability/Ubiquity: Cannot be a proprietary solution

ÅOur near-term strategy is
ïSmooth progression to exascale from a user's point of view

ïSupport for legacy code, albeit at less than optimal
performance

ïSupport for a variety of programming models

ïSupport optimized libraries

- 8 -

Although architecture for NERSC-8 is not yet

known, trend for all 2015/2016 systems is

manycore

- 9 -

ÅRegardless of processor
architecture, users will
need to modify applications
to achieve performance
ïExpose more on-node

parallelism in applications

ï Increase application
vectorization capabilities

ïFor co-processor
architectures, locality
directives must be added

ïHierarchical memory

 NERSC workload has hundreds of codes.
How will application teams make the transition?

NERSC App Readiness Team

Nick Wright (Co-

Lead)

Katerina Antypas

(Co-Lead)

Harvey Wasserman

Chemistry

Brian Austin

Quantum

Chemistry

Zhengji Zhao

Materials Science

Jack Deslippe

Materials Science

Woo-Sun Yang

Climate

Helen He

Climate

Matt Cordery

Climate

Kirsten Fagnan

Bio-Informatics

Jon Rood

Applied Math/Bio-

informatics

Christopher Daley

Astrophysics/Adaptiv

e Mesh

ǒ If you do nothing, your MPI-only code may run

poorly on future machines.

ǒ NERSC is here to help

NERSCôs highly concentrated workload,

but astro codes are not

Å10 codes make up
50% of the workload

Å25 codes make up
66% of the workload

- 11 -

>500

Breakdown of Application
Hours on Hopper 2012

NERSC Application Readiness Effort

- 12 -

ÅNERSC has a robust application transition plan in
place which will help transition users to the NERSC-8
architecture

Vendor
partner

ships

NERSC is committed to helping our users make this transition

Developer
Workshops

for 3rd-
Party SW

Early
engagement

with code
teams

Leverage
existing

communit
y efforts

Early
testbeds
for users Training

series
and

online
modules

Postdoc
Program

FLASH Case Study

Christopher Daley

Case Study on the Xeon-Phi (MIC)

Architecture

ωNERSC Testbed Babbage
ω45 Sandy-bridge nodes with Xeon-Phi Co-processor
ωEach Xeon-Phi Co-processor has
ω 60 cores
ω 4 HW threads per core
ω 8 GB of memory

ωMultiple ways to program with co-processor
ωAs an accelerator
ωAs a self-hosted processor (ignore Sandy-bridge)
ωReverse accelerator

ωWe chose to test as if the Xeon-Phi was a stand
alone processor because Intel has announced next
generation will be self-hosted

- -

FLASH application readiness

ωFLASH is an Adaptive Mesh Refinement (AMR) code with
explicit solvers for hydrodynamics and magneto-
hydrodynamics

ωParallelized using
ς MPI domain decomposition AND

ς OpenMP multithreading over either local domains or over cells in each local
domain

ωTarget application is a 3D Sedov explosion problem
ς A spherical blast wave is evolved over multiple time steps

ς We test a configuration with a uniform resolution grid (and not AMR) and use
1003 global cells

ωThe hydrodynamics solvers perform large stencil
computations.

- -

Best MIC performance vs host

- -

L
o
w

e
r is

 B
e
tte

r

Best configuration on 1 MIC card

- -

L
o
w

e
r is

 B
e
tte

r

MIC performance study 1: thread

speedup

- -

H
ig

h
e
r is

 B
e
tte

r

ω1 MPI rank per MIC
card and various
numbers of
OpenMP threads

ωEach OpenMP
thread is placed on a
separate core

ω10x thread count
ideally gives a 10x
speedup

ωSpeedup is not ideal
ς But it is not the main cause of the poor MIC performance
ς ~70% efficiency @ 12 threads (as would be used with 10 MPI ranks per card)

Vectorization is another form of on-node

parallelism

 do i = 1, n

 a(i) = b(i) + c(i)

 enddo

Intel Xeon Sandy-Bridge/Ivy-Bridge: 4 Double Precision Ops Concurrently

Intel Xeon Phi: 8 Double Precision Ops Concurrently

NVIDIA Kepler GPUs: 32 SIMT threads

Things that Kill Vectorization

Compilers want to ñvectorizeò your loops whenever possible. But

sometimes they get stumped. Here are a few things that prevent your

code from vectorizing:

Loop dependency:

Task forking:

 do i = 1, n

 a(i) = a(i - 1) + b(i)

 enddo

 do i = 1, n

 if (a(i) < x) cycle

 ...

 enddo

ς The data for 1 grid point is laid out as a structure of fluid fields, e.g. density,
ǇǊŜǎǎǳǊŜΣ ΧΣ ǘŜƳǇŜǊŀǘǳǊŜ ƴŜȄǘ ǘƻ ŜŀŎƘ ƻǘƘŜǊΥ A(HY_DENS:HY_TEMP)

ςVectorization can only happen when the same operation is performed on
multiple fluid fields of 1 grid point!

- -

No vectorization gain!

L
o
w

e
r is

 B
e
tte

r

MIC performance study 2:

vectorization

ωWe find that most
time is spent in
subroutines which
update fluid state 1
grid point at a time

ωMust restructure the code
- The fluid fields should no longer be next to each other in memory
- !όI¸ψ59b{ΥI¸ψ¢9atύ ǎƘƻǳƭŘ ōŜŎƻƳŜ !ψŘŜƴǎόмΥbύΣ ΧΣ !ψǘŜƳǇόмΥbύ

- The 1:N indicates the kernels now operate on N grid points at a time

ωWe tested these changes on part of a data reconstruction kernel

- -

ωThe new code
compiled with
vectorization
options gives the
best
performance on
3 different
platforms

H
ig

h
e
r is

 B
e
tte

r

Enabling vectorization

ωFLASH on MIC
ςMPI+OpenMP parallel efficiency ς OK
ςVectorization ς zero / negative gain ΧƳǳǎǘ ǊŜǎǘǊǳŎǘǳǊŜΗ
ω Compiler auto-vectorization / vectorization directives do not help the current code

ωChanges needed to enable vectorization

ςMake the kernel subroutines operate on multiple grid points at a time

ς Change the data layout by using a separate array for each fluid field

ω Effectively a change from array of structures (AofS) to structure of arrays (SofA)

ωTested these proof-of-concept changes on a reduced hydro kernel

ςDemonstrated improved performance on Ivy-Bridge, BG/Q and Xeon-Phi platforms

- -

Good Parallel Efficiency AND Vectorization = Good MIC Performance

Summary

Burst Buffer

Burst Buffer

ÅFlash storage which would act as a cache to improve
peak performance of the PFS.

ÅFlash is currently as little as 1/6 the cost of disk per

GB/s bandwidth and has better random access
characteristics(no seek penalty).

- 25 -

Burst Buffer and why weôre

interested

- 26 -

ÅNERSC I/O is bursty

ïWhile the Filesystem ƛǎ ǊŜƎǳƭŀǊƭȅ ǇǳǎƘŜŘ ǘƻ ƴŜŀǊ ƛǘΩǎ ǇŜŀƪ
ōŀƴŘǿƛŘǘƘΣ Ƴƻǎǘ ƻŦ ǘƘŜ ǘƛƳŜ ƛǘΩǎ ǳǘƛƭƛȊŀǘƛƻƴ ƛǎ ǿŜƭƭ ōŜƭƻǿ
ƛǘΩǎ Ŧǳƭƭ ŎŀǇŀōƛƭƛǘȅΦ LŦ ǇŜŀƪ .² ǊŜǉǳƛǊŜƳŜƴǘǎ Ŏŀƴ ōŜ
adequately met by a flash cache, the file system can be
more modestly provisioned.

Thank you

- 27 -

Requirements Workshops describe a critical

need for a significant increase in HPC

resources

ÅOne workshop and report
per office, organized by
ASCR and NERSC

ÅCase studies on science
needs

ÅEstimated 2016 need over
47 times Hopper capability

ÅNERSC-7 will not fulfill
need

http://www.nersc.gov/science/requirements-workshops/final-reports/

Lead by Richard Gerber and
Harvey Wasserman

BerkeleyGW Case Study

Jack Deslippe

Case Study: BerkeleyGW

Description:

A material science code to compute

excited state properties of materials.

Works with many common DFT

packages.

Algorithms:

- FFTs (FFTW)

- Dense Linear Algebra (BLAS / LAPACK

/ SCALAPACK / ELPA)

- Large Reduction Loops.

Silicon Light Absorption vs.

Photon Energy as Computed in

BerkeleyGW

Failure of the MPI-Only Programming Model in BerkeleyGW

Ấ Big systems require more memory. Cost scales as Natm^2 to store the data.

Ấ In an MPI GW implementation, in practice, to avoid communication, data is duplicated and

each MPI task has a memory overhead.

Ấ On Hopper, users often forced to use 1 of 24 available cores, in order to provide MPI tasks

with enough memory. 90% of the computing capability is lost.

Distributed Data

Overhead Data

MPI Task 1

Distributed Data

Overhead Data

MPI Task 2

Distributed Data

Overhead Data

MPI Task 3

Χ

Steps to Optimize BerkeleyGW on Xeon-Phi Testbed

Time/Code-Revision

(2 Sandy Bridge)

(1 Xeon-Phi)

*

Lo
w

er is B
etter

1. Refactor to create hierarchical set of loops to be parallelized via MPI,

OpenMP and Vectorization and to improve memory locality.

2. Add OpenMP at as high a level as possible.

3. Make sure large innermost, flop intensive, loops are vectorized

 * - eliminate spurious logic, some code restructuring simplification and

other optimization

Steps to Optimize BerkeleyGW on Xeon-Phi Testbed

Time/Code-Revision

1. Refactor to create hierarchical set of loops to be parallelized via MPI,

OpenMP and Vectorization and to improve memory locality.

2. Add OpenMP at as high a level as possible.

3. Make sure large innermost, flop intensive, loops are vectorized

 * - eliminate spurious logic, some code restructuring simplification and

other optimization

(2 Sandy Bridge)

After optimization,

4 early Intel Xeon-

Phi cards with

MPI/OpenMP is

~1.5X faster than

32 cores of Intel

Sandy Bridge on

test problem.

(1 Xeon-Phi)

*

Lo
w

er is B
etter

Simplified Final Loop Structure

!$OMP DO reduction(+:achtemp)

 do my_igp = 1, ngpown

 ...

 do iw=1,3

 scht=0D0

 wxt = wx_array(iw)

 do ig = 1, ncouls

 !if (abs(wtilde_array(ig,my_igp) * eps(ig,my_igp)) .lt. TOL) cycle

 wdiff = wxt - wtilde_array(ig,my_igp)

 delw = wtilde_array(ig,my_igp) / wdiff

 ...

 scha(ig) = mygpvar1 * aqsntemp(ig) * delw * eps(ig,my_igp)

 scht = scht + scha(ig)

 enddo ! loop over g

 sch_array(iw) = sch_array(iw) + 0.5D0*scht

 enddo

 achtemp(:) = achtemp(:) + sch_array(:) * vcoul(my_igp)

 enddo

!$OMP DO reduction(+:achtemp)

 do my_igp = 1, ngpown

 ...

 do iw=1,3

 scht=0D0

 wxt = wx_array(iw)

 do ig = 1, ncouls

 !if (abs(wtilde_array(ig,my_igp) * eps(ig,my_igp)) .lt. TOL) cycle

 wdiff = wxt - wtilde_array(ig,my_igp)

 delw = wtilde_array(ig,my_igp) / wdiff

 ...

 scha(ig) = mygpvar1 * aqsntemp(ig) * delw * eps(ig,my_igp)

 scht = scht + scha(ig)

 enddo ! loop over g

 sch_array(iw) = sch_array(iw) + 0.5D0*scht

 enddo

 achtemp(:) = achtemp(:) + sch_array(:) * vcoul(my_igp)

 enddo

Simplified Final Loop Structure

ngpown typically
ƛƴ мллΩǎ ǘƻ млллǎΦ
Good for many
threads.

ncouls typically in
1000s - 10,000s.
Good for
vectorization.
5ƻƴΩǘ ƘŀǾŜ ǘƻ
worry much about
memory.
alignment.

Original inner
loop. Too small to
vectorize!

Attempt to save
work breaks
vectorization and
makes code
slower.

Running on Many-Core Xeon-Phi Requires OpenMP Simply

To Fit Problem in Memory

#MPI-Tasks x
#OMP Threads
= 120, 16

Lo
w

er is B
etter

Running on Many-Core Xeon-Phi Requires OpenMP Simply

To Fit Problem in Memory

Ấ Example problem cannot fit into memory when using less than 5 OpenMP
threads per MPI task.

Ấ Conclusion: you need OpenMP to perform well on Xeon-Phi in practice

Lo
w

er is B
etter

Burst Buffer cont.

Å NERSC I/O is not well structured
ï Even after all file system attempts to optimize I/O operations, unaligned, or small I/O

patterns result in 50% of all I/Os logged by LMT at NERSC being less than the filesystem
block size.

ï Given that Lustre is combining sequential small I/O ops into larger ones, this implies that
these are not in the middle of a larger sequential I/O stream, and require head
ƳƻǾŜƳŜƴǘ ƛƴ ƻǊŘŜǊ ǘƻ ōŜ ǎŜǊǾƛŎŜŘΣ ŀƴŘ ǿƻǳƭŘ ōŜƴŜŦƛǘ ŦǊƻƳ ŦƭŀǎƘΩǎ ōŜǘǘŜǊ small block,
and random I/O characteristics vs. disk.

0

2E+12

4E+12

6E+12

8E+12

1E+13

1.2E+13

1.4E+13

1.6E+13

1.8E+13

2E+13

READ
WRITE

N
u

m
b

er
 o

f
P

O
SI

X
 T

ra
n

sa
ct

io
n

s

Distribution of I/O transactions count
(Data taken from Mar 1 ς Oct 31, 2013, approx 40% of Hopper raw hours captured)

Application(client) I/O request sizes Lustre(server) I/O sizes

- 38 -

