IBM Data Centric Systems & OpenPOWER

Yoonho Park
Research Staff Member/Senior Manager
Data Centric Systems Software, Cloud and Cognitive

IBM Research
Data Growth Outpaces Computing Technology Elements

Data volume grows exponentially

Microprocessor clock rates have stalled...

I/O performance/capacity loosing ground...

And network bandwidth cannot keep up.
Big Data and the New Era of Computing

Data volume is on the rise

- Sensors & Devices
- Social Media
- VoIP
- Enterprise Data

Dimensions of data growth

- **Volume**: Terabytes to exabytes of existing data to process
- **Velocity**: Streaming data, milliseconds to seconds to respond
- **Variety**: Structured, unstructured, text, multimedia
- **Veracity**: Uncertainty from inconsistency, ambiguities, etc.

- **Big Data analytics and Exascale High Performance Computing facing similar challenges**: scale, performance, bandwidth, computational complexity
- **IBM approach**: Move compute to data – Data Centric Systems (DCS)
Different Solutions for Different Types of Workflows

- Conceptual View of Data Intensive with Floating Point Workflow
- Conceptual View of Data Intensive-Integer Workflow
- Low Spatial Locality
- Integer OPS
- Conceptual View of Data Intensive with Floating Point Workflow

- Data Centric Applications
- Compute Centric Applications

- Floating Point OPS
- High Spatial Locality

Region defined by LINPACK
Data Centric Workflows: Mixed Compute Capabilities Required

Analytics Capability:
- Complex code
- Data Dependent Code Paths / Computation
- Lots of indirection / pointer chasing
- Often Memory System Latency Dependent
- C++ templated codes
- Limited opportunity for vectorization
- Limited scalability
- Limited threading opportunity

Massively Parallel Compute Capability:
- Simple kernels,
- Ops dominated (e.g. DGEMM, Linpack)
- Simple data access patterns.
- Can be preplanned for high performance.
Comparing Compute Centric to Data Centric

- Systems and Solutions must become more data centric and data aware
 - Data movement minimized
 - Within the system
 - Within/across the end to end solution
 - Compute enabled at all levels
 - Workloads/workflow driven system and solution design choices
 - Modular, composable solution architectures
 - Enhanced resource agility and sharing

- Focus must shift from algorithms to workflows
 - New end to end efficiencies and optimizations
 - Based on a data aware understanding of the full scope of resource requirements
 - Storage, Networking, Compute, Applications, Resource management, Data Centers

- Uncertainty of the future puts a premium on flexibility and innovation
IBM Data Centric Design Principles

Massive data requirements drive a composable architecture for big data, complex analytics, modeling and simulation. The DCS architecture will appeal to segments experiencing an explosion of data and the associated computational demands.

Principle 1: Minimize data motion
- Data motion is expensive
- Allow workloads to run where they run best

Principle 2: Enable compute in all levels of the systems hierarchy
- HW & SW innovations to support / enable compute in data

Principle 3: Modularity
- Balanced, composable architecture for Big Data analytics, modeling and simulation

Principle 4: Application-driven design
- Use real workloads/workflows to drive design points

Principle 5: Leverage OpenPOWER to accelerate innovation and broaden diversity for clients
IBM OpenPOWER-based HPC Roadmap

<table>
<thead>
<tr>
<th>Mellanox Interconnect Technology</th>
<th>IBM CPUs</th>
<th>NVIDIA GPUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER8</td>
<td>Connect-IB FDR Infiniband PCIe Gen3</td>
<td>Kepler PCIe Gen3</td>
</tr>
<tr>
<td>OpenPower CAPI Interface</td>
<td>POWER8+</td>
<td>Pascal NVLink</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ConnectX-4 EDR Infiniband CAPI over PCIe Gen3</td>
<td></td>
<td>Volta Enhanced NVLink</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ConnectX-5 Next-Gen Infiniband Enhanced CAPI over PCIe Gen4</td>
<td></td>
</tr>
</tbody>
</table>

IBM Nodes
- 2015
- 2016
- 2017

Heterogeneity is Key
OpenPOWER, a catalyst for Open Innovation

Market Shifts

- Moore’s law no longer satisfies performance gain
- Growing workload demands
- Numerous IT consumption models
- Mature Open software ecosystem

New Open Innovation

- Rich software ecosystem
- Spectrum of power servers
- Multiple hardware options
- Derivative POWER chips

Open Development

collaboration of thought leaders

Open Software

open software, open hardware

Performance

amplified capability

OpenPOWER is an open development community, using the POWER Architecture to serve the evolving needs of customers.
US & UK Research Centers Select OpenPOWER-based Supercomputers

IBM, Mellanox, and NVIDIA awarded $325M U.S. Department of Energy’s CORAL Supercomputers

CORAL: Leadership Class Supercomputers

5x – 10x Higher App Perf Than Current Systems

IBM & UK’s STFC in £313M Partnership for Big Data & Cognitive Computing Research
Hybrid CPU/GPU architecture

- At least 5X Titan / Sequoia Application Performance
- Approximately 3,400 nodes, each with:
 - Multiple IBM POWER9™ CPUs and multiple NVIDIA Tesla® GPUs using the NVIDIA Volta architecture
 - CPUs and GPUs completely connected with high speed NVLink
 - Large coherent memory: over 512 GB (HBM + DDR4)
 - All memory directly addressable from the CPUs and GPUs
- Over 40 TF peak performance per node
- Dual-rail Mellanox® EDR-IB full, non-blocking fat-tree interconnect
- IBM Elastic Storage (GPFS™) - 1TB/s I/O and 120 PB disk capacity.
Programming Approaches

- **Accelerator Approach:**
 - Required when not coherent
 - Each processor computes in its own private address space
 - Data objects are homed in CPU Memory, are copied to GPU memory for GPU execution, GPU engines act only on data in GPU memory.

- **Compute in Shared Address Space:**
 - New option, now that CPU / GPU memories are coherent
 - Data objects can be in any physical memory domain
 - Processors (either CPU or GPU) can use data in place.
 - No copies required

- **Note:**
 - Will still have to manage NUMA
Compute and Memory View – Emerging Approach

Multiple Compute Engines
• Consider all engines as equal peers

Multiple Memories
• Consider all memories as equal peers
Compute and Memory View – Traditional Acceleration

Data / Compute Flow

MPI Task

Data
Peer Processing

Data can be placed at Allocation, or can migrate under run time control (e.g. UVM)
Thread-like programming model (OpenMP 4.x, OpenAcc, CUDA …
Still under development …
Future DCS Programming Model

Big Data workflows
- Unstructured or semi-structured data
- Collaborative Filtering, clustering, web search, recommendation, …
- Real-time analysis, fraud and anomaly detections
- Sensor data filtering, classification, …
- Statistical averages/histogram, …
- Deep Learning, Support Vector Machine, …
- Graph Community finding to Shortest Path, …

HPC workflows
- Structured data
- Exascale data sets
- Primarily scientific calculations
- Ensemble analysis
- Sensitive analysis
- Uncertainty quantification

Common challenges
- Network bandwidth/efficiency
- CPU clock rate stalling
- IO performance
- Layered storage: New storage technologies

HPC ecosystem
- Fortran/C, MPI+OpenMP, CUDA, Legion, …
- UPC, OpenSHMEM, Charm++, GASNet, …
- UCX, PAMI, Verbs, …

Exascale Runtime & Middleware
- High productivity, fault-tolerance

1GigE, TCP/IP, HDDs, …

Commodity clusters
- High productivity and High performance

OpenPOWER/DCS
- High performance, specialized hardware

CAPI, InfiniBand, Flash

© 2016 IBM
DCS OpenPOWER Software Contribution Examples

- Linux – NUMA support for hardware coherent GPU memory
- Provisioning – xCAT
- Burst Buffer – Support for fast shared-file checkpointing
- CSM – Cluster System Management
- Compilers – LLVM
- Tools – Ensure tools have appropriate APIs
Experience/Observation: Extraction of meaningful insights from Big Data and enabling real-time, predictive decision making requires similar computation techniques that have been characteristic of Technical Computing

- Convergence in many future workflow requirements including Big Data-driven analytics, modeling, visualization, and simulation
- Will require optimized full-system design and integration

IBM Approach: Data Centric innovation in multiple areas, in open ecosystems with workload-driven co-design

- System architecture and design with modular building blocks
- Hardware technologies
- Integration of heterogeneous compute elements
- Software enablement