Quantum Computing – An Overview

TR Govindan

NAS Division

NASA Ames Research Center

Program Manager, QIS U.S. Army Research Office

Outline

- Motivation
- Essentials of the Quantum Computing (QC) model
- Challenges for QC science & technology
- Physical qubit types
- Progress
- Summary
- Talk connects with the gate-model of quantum computing

Motivation

- Fundamentally different model of computation from classical computation
- Model changes classical computational complexity of hard problems
 - Makes tractable computational problems that are outside P
 - Unlikely to make NP-Complete problems tractable

16-18 April, 2018

Essentials of the QC model

- Computations are probabilistic
 - Quantum mechanics is inherently probabilistic
- Computations can be arranged (algorithms) so that certain probabilities are enhanced and others are depressed (zeroed)
 - Picture interference fringes from a double slit light (photon) experiment
- Information is exponential in the number of qubits (superposition)
- Entanglement provides access to the exponential information space
 - Superposition and entanglement are core resources in the QC model
- Universal computation from a small gate set (one and two-qubit gates)
 - Learn to do a small set of quantum logic gates very well

Challenges

- Qubits with long coherence times
 - Materials, fabrication
 - Control of the qubit
 - Control of the environment in which the qubits operate
- High-fidelity (precision) operations on the qubit
 - One and two-qubit (multi-qubit)gates
 - High-fidelity state preparation (initialization)
 - High-fidelity readout (measurement)
- Fault-tolerant error correction
- Validation and verification of multi-qubit systems
- Algorithms

Focus of the last twenty years of research. which continues

Recent focus

Always searching

Physical qubit types

- Trapped ions
 - Currently most "quantum" of qubit types
 - Very little leverage for technology scaling
- Superconductors
 - Recent rapid progress in coherence and gate fidelity
 - Leverage semiconductor technology for scaling, but materials are different
- Semiconductors (silicon)
 - Only recent demonstrations of one and two-qubit gates
 - Matched to leverage silicon technology
- Topologically protected qubits
 - No qubit demonstrations but very promising theory
 - Circuit based or materials based
 - Anticipate rapid scaling leveraging very low error rates

Where are we?

							1			
						??		Fault tolerant quantum computation		
				?			gorithms on multiple logical qubits			
		<mark>16 -</mark>	Operations on single logical qubits							
	201	2015 -		Logical memory with longer lifetime than physical qubits						
	12 -	QND			o measurements for error correction and control					
2009 - Algo				orithms on multiple physical qubits						
ca 199	98 - on	Op	Operations on single physical qubits							
								time		

from M. Devoret and R. Schoelkopf, Science (2013)

ser Forum Tucson, AZ 16-18 April, 2018
--

Progress

Partial history of two-qubit gate fidelity progress (From: David Lucas, Oxford)

Partial history of coherence improvements in superconducting qubits (From: Will Oliver, MIT)

16-18 April, 2018

Summary

- Much progress has been made in demonstrating basic steps in quantum information processing from nearly two-decades of research (Feasibility)
- Much research still to be done and understanding gained to overcome remaining challenges
- Expect many demonstrations of multi-qubit systems with "noisy" qubits (see John Preskill's arxiv paper, Noisy Intermediate Scale Quantum technology)
- In the next few years, we will learn about the capabilities and usefulness of these systems and point the way to applications
- Testbeds and heuristics likely to greatly expand the application space

Thank you!