HPC Market Update and Observations on Big Memory **December 10, 2020** Mark Nossokoff Senior Analyst, Lead Storage Analyst ## Visit Our Website: www.HyperionResearch.com Twitter: @HPC_Hyperion # **HPC Market Update** ## **On-prem Broader Market Forecast** Storage is expected to grow the most at 8.3% | | | | | <u> </u> | | | | |----------------------|----------|----------|----------|----------|----------|----------|---------------| | Market Area
(\$M) | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | CAGR
19-24 | | Server | \$13,710 | \$11,846 | \$13,295 | \$15,817 | \$17,942 | \$19,044 | 6.8% | | Storage | \$5,427 | \$4,772 | \$5,410 | \$6,519 | \$7,577 | \$8,099 | 8.3% | | Middleware | \$1,613 | \$1,402 | \$1,576 | \$1,902 | \$2,171 | \$2,317 | 7.5% | | Applications | \$4,689 | \$4,062 | \$4,455 | \$5,258 | \$5,862 | \$6,111 | 5.4% | | Service | \$2,239 | \$1,899 | \$2,040 | \$2,366 | \$2,587 | \$2,643 | 3.4% | | Total Revenue | \$27,678 | \$23,981 | \$26,774 | \$31,862 | \$36,138 | \$38,214 | 6.7% | Source: Hyperion Research, November 2020 #### Forecast incorporates Covid-19's impact - Downside pressure - Delayed product shipments - Delayed revenues - Delayed orders - Decline of 11.5% in first half of 2020 - Forecasting Y/Y decline of 14% for 2020 - Upside momentum - Demand to combat Covid-19 - Increase in HPC workloads running in the public cloud - Expected recovery in mid 2021 ## **HPC-enabled On-prem AI Server Forecast** HPC-Enabled AI Growth ~ 5x Overall HPC Server Growth 2019-2024 # **HPC On-Prem Server Forecast By Application Area** Government, Academic, CAE/Manufacturing and Bio-sciences >50% of market | \$M | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | CAGR
19-24 | |----------------------|----------|----------|----------|----------|----------|----------|---------------| | Bio-Sciences | \$1,457 | \$1,239 | \$1,226 | \$1,536 | \$1,739 | \$1,850 | 4.9% | | CAE | \$1,721 | \$1,468 | \$1,492 | \$1,859 | \$2,110 | \$2,242 | 5.4% | | Chemical Engineering | \$170 | \$145 | \$154 | \$185 | \$209 | \$220 | 5.2% | | DCC & Distribution | \$825 | \$696 | \$681 | \$857 | \$970 | \$1,017 | 4.3% | | Economics/Financial | \$710 | \$608 | \$623 | \$818 | \$924 | \$972 | 6.5% | | EDA / IT / ISV | \$822 | \$702 | \$696 | \$918 | \$1,037 | \$1,091 | 5.8% | | Geosciences | \$969 | \$815 | \$843 | \$1,010 | \$1,151 | \$1,231 | 4.9% | | Mechanical Design | \$52 | \$044 | \$049 | \$057 | \$065 | \$068 | 5.6% | | Defense | \$1,472 | \$1,284 | \$1,317 | \$1,692 | \$1,916 | \$2,027 | 6.6% | | Government Lab | \$2,418 | \$2,161 | \$3,352 | \$3,314 | \$3,759 | \$4,127 | 11.3% | | University/Academic | \$2,301 | \$1,993 | \$2,141 | \$2,647 | \$2,981 | \$3,053 | 5.8% | | Weather | \$639 | \$553 | \$570 | \$724 | \$819 | \$866 | 6.3% | | Other | \$155 | \$139 | \$151 | \$202 | \$261 | \$279 | 12.5% | | Total Revenue | \$13,710 | \$11,846 | \$13,295 | \$15,817 | \$17,942 | \$19,044 | 6.8% | Source: Hyperion Research, November 2020 ## **HPC Usage in the Cloud** ## Expected to incrementally add \$8.8B to on-prem HPC spend in 2024 | Market Area (\$M) | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | CAGR
19-24 | |----------------------------------|----------|----------|----------|----------|----------|----------|---------------| | Server | \$13,710 | \$11,846 | \$13,295 | \$15,817 | \$17,942 | \$19,044 | 6.8% | | Storage | \$5,427 | \$4,772 | \$5,410 | \$6,519 | \$7,577 | \$8,099 | 8.3% | | Middleware | \$1,613 | \$1,402 | \$1,576 | \$1,902 | \$2,171 | \$2,317 | 7.5% | | Applications | \$4,689 | \$4,062 | \$4,455 | \$5,258 | \$5,862 | \$6,111 | 5.4% | | Service | \$2,239 | \$1,899 | \$2,040 | \$2,366 | \$2,587 | \$2,643 | 3.4% | | Public Cloud Spend | \$3,910 | \$4,300 | \$5,300 | \$4,600 | \$7,600 | \$8,800 | 17.6% | | Total On and Off
Prem Revenue | \$31,588 | \$28,281 | \$32,076 | \$36,462 | \$43,739 | \$47,014 | 8.3% | Source: Hyperion Research, November 2020 2024 Broader Market Forecast - ~\$47B Source: Hyperion Research, November 2020 ## **Key Buying Requirements For On-prem HPC** Price/performance and overall performance on specific applications the top items | Top Criteria For Next Purchase | | |--|-----| | Price | 83% | | Application Performance | 61% | | Security | 25% | | Faster CPUs | 25% | | AI-Big Data Capabilities | 22% | | Interconnect Performance | 16% | | Quality | 15% | | Accelerators | 14% | | Storage | 11% | | Memory Bandwidth | 10% | | Backwards Compatibility with Current Systems | 10% | | Source of Open Source Software | 4% | | Other | 3% | # **Observations on Big Memory and HPC** ## What is Big Memory? High capacity, performant, resilient data via memory footprint and accessibility | | Historic
perspective on
memory | HPC
Requirements | Big Memory | |----------------------------|--------------------------------------|---------------------|------------------------------| | Cost | Expensive | 1 | Less expensive | | Capacity | 100s GB memory
per server | 1 | 100s TB memory
per server | | Resiliency | Volatile | 1 | HA Tier | | Relationship to
Storage | Extension of memory | | Data is in memory | | Data
Access | Туре | Form Factor | |----------------|-------------------|-------------------------| | | Integrated | n/a | | | DRAM | DIMM | | Hot/Active | Persistent Memory | DIMM | | | SSD | AIC, U.2, M.2,
EDSFF | | Warm | HDD dual actuator | 3.5" | | | HDD | 3.5" | | Cold | Таре | | Persistent Memory + Memory Virtualization Software ## HPC On-Prem Server Forecast By Application Area #### Government, Academic, CAE/Manufacturing and Bio-sciences >50% of market | Anuliantian | Revenue (\$M) | | | | |-----------------------------|---------------|----------|---------------|--| | Application | 2019 | 2024 | CAGR
19-24 | | | Bio-Sciences | \$1,457 | \$1,850 | 4.9% | | | CAE / Manufacturing | \$1,721 | \$2,242 | 5.4% | | | Chemical Engineering | \$170 | \$220 | 5.2% | | | DCC & Distribution | \$825 | \$1,017 | 4.3% | | | Economics/Financial | \$710 | \$972 | 6.5% | | | EDA / IT / ISV | \$822 | \$1,091 | 5.8% | | | Geosciences | \$969 | \$1,231 | 4.9% | | | Mechanical Design | \$52 | \$068 | 5.6% | | | Defense | \$1,472 | \$2,027 | 6.6% | | | Government Lab | \$2,418 | \$4,127 | 11.3% | | | University/Academic | \$2,301 | \$3,053 | 5.8% | | | Weather | \$639 | \$866 | 6.3% | | | Other | \$155 | \$279 | 12.5% | | | Total | \$13,710 | \$19,044 | 6.8% | | | Processors Shipped (estimated) | | | | |--------------------------------|-----------|---------------|--| | 2019 | 2024 | CAGR
19-24 | | | 425,956 | 534,882 | 4.7% | | | 502,965 | 648,452 | 5.2% | | | 49,796 | 63,591 | 5.0% | | | 241,401 | 294,212 | 4.0% | | | 206,904 | 281,127 | 6.3% | | | 240,322 | 315,575 | 5.6% | | | 283,098 | 355,851 | 4.7% | | | 15,166 | 19,748 | 5.4% | | | 430,349 | 586,136 | 6.4% | | | 785,793 | 1,193,592 | 8.7% | | | 672,908 | 882,790 | 5.6% | | | 186,845 | 250,432 | 6.0% | | | 45,191 | 80,660 | 12.3% | | | 4,086,694 | 5,507,047 | 6.1% | | Most amenable to Big Memory Likely amenable to Big Memory - Core counts growing faster than memory capacities - Memory amount per core decreasing - Can memory be efficiently and effectively pooled and utilized? Source: Hyperion Research, November 2020 ## **Key Buying Requirements For On-prem HPC** Price/performance and overall performance on specific applications the top items | Top Criteria For Next Purchase | | |--|-----| | Price | 83% | | Application Performance | 61% | | Security | 25% | | Faster CPUs | 25% | | AI-Big Data Capabilities | 22% | | Interconnect Performance | 16% | | Quality | 15% | | Accelerators | 14% | | Storage | 11% | | Memory Bandwidth | 10% | | Backwards Compatibility with Current Systems | 10% | | Source of Open Source Software | 4% | | Other | 3% | Potential areas Big Memory can address ## **HPC and HPDA/AI Workloads** ## HPDA/AI workloads changing the status quo of data access | Workload | Use Case | Description | |--------------------|---------------------|---| | | Project | Sometimes referred to as home directories or user files Used to capture and share final results of the modelling and simulation Mixture of bandwidth and throughput needs, utilizing hybrid flash, HDD storage solutions | | Traditional
HPC | Scratch | Workspace capacity used to perform the modelling and simulation Includes metadata capacity (high throughput [IOs/sec] and flash-based) and raw data capacity and checkpoint writes for protection against system component failure during long simulation runs (high bandwidth [GB/s], traditionally HDD-based but now largely hybrid flash and HDDs | | | Archive | Long-term data retention Scalable storage without a critical latency requirement Largely near-line HDD-based systems with a growing cloud-based element. Typically file or object data types | | | Ingest | Quickly loading large amounts of data from a variety of different sources such that the data can be tagged, normalized, stored and swiftly retrieved for subsequent analysis Very high bandwidth (GB/s) performance at scale to sustain retrieving data rates, typically object-based, high-capacity HDD-based and increasingly cloud-based. | | | Data
Preparation | Often times referred to as data classification or data tagging, requires a balanced mix of throughput and bandwidth (hybrid flash and HDD storage systems) | | HPDA/AI | Training | Utilizing Machine Learning (ML) and/or Deep Learning (DL) to build an accurate model for researchers, engineers and business analysts to use for their research, design and business needs Requires high throughput (IOs/sec) and low latency for continuous and repetitive computational analysis of the data, typically flash-based storage. | | | Inference | Utilizing the model for experimentation and analysis to derive and deliver the targeted scientific or business insights Also requires high bandwidth and low latency and typically flash-based, often with a caching layer | | | Archive | Long-term data retention Scalable storage without a critical latency requirement Largely near-line HDD-based systems with a growing cloud-based element. Typically file or object data types | #### Traditional HPC - Metadata - Small block, random - Focus on latency, IOPs - Simulation data - Large block, sequential - Focus on GB/s - Historically separate data stores #### HDPA / AI - Heterogenous I/O profiles - Interspersed transfer sizes, access patterns and performance focus - Growing dataset sizes Most amenable to Big Memory Likely amenable to Big Memory ## Closing Observations on Big Data, Big Memory and HPC HPDA requires massive growth in data consumption and memory sizes #### "Traditional" Memory - Node-based - Ephemeral - Transient - Byte addressable - Lowest latencies # **Opportunity** #### "Traditional" Storage - Add-on - Persistent - Resilient - Block addressable - Longer Latencies #### Conventional thoughts on memory - Limited amount, expensive, persistent - Plentiful, less expensive, but not persistent ## Consistent feedback from HPC users for most new technologies - Is there enough [insert resource] for my [insert task]? - Is there enough <u>memory</u> for my <u>working dataset size?</u> - How much will my "time to results" be improved? - Will it simplify (at least not complicate) system management, data management and workflow? - Do I need to change any code? - Can I afford the amount of memory I need for my HPC workloads? Questions or comments are welcome. mnossokoff@hyperionres.com