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What is a ‘Exascale’ Supercomputer?
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1. FP64 Performance > 1 Exaflop (EF)

1.1. Achieve Rpeak (FP64) > 1 EF

1.2. Achieve Top500 – Linpack Rmax > 1 EF

 Fugaku Rmax = 0.442 EF, Rpea = 0.537 EF-> NG

 However, very little correlation to real apps, symbolic

2. Any floating point precision performance > 1 Exaflop

1.1. Peak FP performance > 1 EF

1.2. Measured performance in credible app or benchmark

 Fugaku FP32, FP16 Peak, HPL-AI (2EF) > 1 Exaflop -> OK!

 However, ORNL Summit: FP16 Peak ~= 3 EF, GB2018 App ~= 2EF

3. Real apps ~= 50~100x 2011~12 10~20PF SCs

 Fugaku ~70x c.f. K (11PF Rmax) on 9 target apps

 “Applications First” -> The most important metric

70x



Fugaku: Largest & Fastest Supercomputer Ever

●Fugaku x 2~3 = Entire annual IT in Japan

- 3x perf c.f. top CPU in HPC apps
- 3x power efficiency c.f. top CPU
- General purpose Arm CPU, runs sa

me program as Smartphones
- Acceleration features for AI

●A new high performance & low power Arm A64FX CPU co-developed by Riken R-CCS & Fujitsu 
along with nationwide HPC researchers as a National Flagship 2020 project

Smartphones
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K
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●Developed via extensive co-design
”Science by Computing"”Science of Computing"

“9 Priority Areas” to develop target 
applications to tackle important 
societal problems

By Riken & Fujitsu & HPCI Centers, 
etc., Arm Ecosystem, Reflecting 
numerous research results 3

‘Applications First’ R&D Challenge--- High Risk “Moonshot” R&D

“Moonshot”
R&D Target



“Applications First” Exascale R&D
Fugaku Target Applications – Priority Research Areas
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 Advanced Applications 
Co-Design Program to 
Parallel Fugaku R&D

 Select one representative 
app from 9 priority areas

 Health & Medicine

 Environment & Disaster

 Energy

 Materials & Manufacturing

 Basic Sciences

 Up to 100x speedup c.f. 
K-Computer => achieved!

131x（GENESIS）

23x(Genomon) 63x(GAMERA)

127x (NICAM+ LETKF)

70x(NTChem)

63x(Adventure)

38x (RSDFT)

51x(FFB)

38x(LQCD) Average
~70xSDGs

Goals



Going Arm, Nov. 4th, 2020

A64FX CPU for supercomputers

Copyright 2020 FUJITSU LIMITED

CPU core frequency 1.8 2.0 2.2 GHz

Peak DP perf (FP64) 2.7 3.0 3.3 TFLOPS

Peak SP perf (FP32) 5.5 6.1 6.7 TFLOPS

Peak HP perf (FP16) 11 12 13 TFLOPS

Memory peak bandwidth 1024 GB/s

 All-in-one 7nm SoC w/ low power consumption

 Armv8.2-A, 512-bit SVE (Scalable Vector 
Extension)

 Four HBM2, 32 GiB per package

 Tofu Interconnect D integrated

 HW inter-core barrier & sector cache

 48 compute cores &
4 assistant cores for OS daemon & MPI offload

A64FX w/o LID 

HBM2 

5



Fugaku: World Leading Advanced IT (not just SC)
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 CPU: Highest performing general purpose CPU for high-end computing

 First server CPU w/7nm process

 3x faster c.f. latest CPUs from US competitors w/SVE & HBM2, etc.

 3x power efficient -> GPU-class power efficiency

 Arm v8.2 ISA compliant (own μ-architecture) => e.g. RHEL works out of the box

 Network/Interconnect: highest bandwidth & lowest latency (Tofu-D)

 400Gbps-class network/node, 0.5μs latency (c.f. IDC 10~100Gbps, 10~100μs latency)

 First server CPU w/ on-die NIC & switch => 160K nodes interconnected w/o external 
switch, 1.6 million switch ports, > 100K AoC cables 

 ~6 PetaByte/s injection bandwidth => 10x aggregate GAFAM IDCs traffic

 System Architecture => World’s first ultra-scale disaggregated architecture

 CPU cores (esp. L2 Cache), memory (HBM2) and NIC all connected via on-chip network 
with multiple DMACs => any memory region in the system of 160K noes accessible by 
any CPU via RDMA and injected onto on-die L2 cache w/sub-μs latecy



 Tofu-D logic Embedded into CPU die

 25mm2 die area (~6% of entire die)

 Power: 8~9W (incl. SerDes&AOC, very low 
power c.f. 100GbE, EDR/HDR IB @ 25-
30W)

 Constant irrespective of state

 ~ 4~5 % of entire node

 Directly connected to on-chip torus 
network

 No I/O bus inbetween e.g. PCI-E

 Direct DMAC access to L2 cache

 6-D torus router switch + DMAC

 ~160,000 low dimension switch on Fugaku

 ~1.6 million ports total

 CPU, Memory, and Tofu-D directly 
connected to on-chip Xbar & NW => 
disaggregated architecture



Fugaku Tofu-D Performance

 8B Put transfer between nodes on the same board

 Total Injection Bandwidth

Copyright 2018 FUJITSU LIMITEDSeptember 11th, 2018, IEEE Cluster 2018

Communication settings Latency

Tofu1(K) Descriptor on main memory 1.15 µs

Direct Descriptor 0.91 µs

TofuD To/From far CMGs 0.54 µs

To/From near CMGs 0.49 µs
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Injection rate Efficiency

Tofu1 (K) 15.0 GB/s 77 %

Tofu1 (FX10) 17.6 GB/s 88 %

TofuD 38.1 GB/s 93 %

C.f. 100GbE in IDC

Latency 10~100μs

C.f. 100GbE in IDC

Bandwidth ~10GB/s



Disaggregated Architecture of A64FX

 Any CPU can access any memory in 

system via RDMA (TNI) to its L2

 Entire 160K Fugaku Nodes

 Sub microsecond latency

NOC + Tofu-D NW Switch on 

every node (on-die)
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Memory 

Controller

Network 

on Chip

L2 cache 8MiB 16-way

HBM2

core core core core core core core

core core core core core core

CMG Configuration (13 cores + L2 + MC=>HBM2)

CMG 

CMG CMG 

HBM2=>NoC=>TNI=>SW…AoC…SW=>TNI=>NoC=>L2&HBM2



Fugaku Total System Config & Performance
 Total # Nodes: 158,976 nodes

 384 nodes/rack x 396 (full) racks = 152,064 nodes

 192 nodes/rack x 36 (half) racks = 6,912 nodes

c.f. K Computer 88,128 nodes

 Theoretical Peak Compute Performances

 Normal Mode (CPU Frequency 2GHz)

 64 bit Double Precision FP: 488 Petaflops

 32 bit Single Precision FP: 977 Petaflops

 16 bit Half Precision FP (AI training): 1.95 Exaflops

 8 bit Integer (AI Inference): 3.90 Exaops

 Boost Mode (CPU Frequency 2.2GHz)

 64 bit Double Precision FP: 537 Petaflops

 32 bit Single Precision FP: 1.07 Exaflops

 16 bit Half Precision FP (AI training): 2.15 Exaflops

 8 bit Integer (AI Inference): 4.30 Exaops

 Theoretical Peak Memory Bandwidth: 163 Petabytes/s

 C.f. K Computer performance comparison (Boost)

 64 bit Double Precision FP: 48x

 32 bit Single Precision: 95x

 16 bit Half Precision (AI training): 190x

 K Computer Theoretical Peak: 11.28 PF for all 
precisions

 8 bit Integer (AI Inference): > 1,500x

 K Computer Theoretical Peak: 2.82 Petaops (64 bits)

 Theoretical Peak Memory Bandwidth: 29x

 K Computer Theoretical Peak: 5.64 Petabytes/s

提供: 富士通株式会社
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Fugaku HPC+Big Data+AI+Cloud ‘Converged’ Software Stack

Red Hat Enterprise Linux 8 Libraries 

Batch Job and Management

System

Open Source 

Management Tool

Spack and other DoE 

ECP Software

Hierarchical File System 

Tuning and Debugging Tools

Fujitsu: Profiler, Debugger, GUI

Math Libraries
Fujitsu: BLAS, LAPACK, ScaLAPACK, SSL II

RIKEN: EigenEXA, KMATH_FFT3D, Batched BLAS,,,,

High-level Prog. Lang.
XMP

Domain Spec. Lang.
FDPS

Red Hat Enterprise Linux Kernel+ optional light-weight kernel (McKernel)

File I/O
DTF

Communication
Fujitsu MPI
RIKEN MPI

Low Level Communication

uTofu, LLC

File I/O for Hierarchical Storage

Lustre/LLIO

Process/Thread

PIP

Virtualization & Container

KVM, Singularity

Compiler and Script Languages

Fortran, C/C++, OpenMP, Java, python, …

(Multiple Compilers suppoted: Fujitsu, Arm, GNU,

LLVM/CLANG, PGI, …)
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Fugaku AI (DL4Fugaku)
RIKEN: Chainer, PyTorch, TensorFlow, DNNL…

Cloud Software Stack
OpenStack, Kubernetis, NEWT...

Live Data Analytics

Apache Flink, Kibana, ….

ObjectStore

S3 Compatible

~3000 Apps sup-
ported by Spack

Most applications will work 
with simple recompile from 
x86/RHEL environment to t
he Arm processor. 
LLNL Spack automates this.

Traditional HPC system eg K-computer

Traditional Clouds eg EC2

Fugaku and 
future HPCI systems



Standard Software Ecosystem & OSS Contributions

 Arm v8.2 + SVE and other server standards fully compliant

 Standard Linux distributions work out of the box, most Cloud, HPC, BD OSSs as well

 Standardized configurations via frameworks (e.g., OneAPI, Spack), VMs, Containers

 High Performance AI being developed w/OneDNN & others) 

オープンソース
コミュニティー

Red Hat Enterprise Linux 8（RHEL8）
Ruby

Most Software on x86 HPC Clusters & Clouds Simply Work on Fugaku
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“Cloud” technologies on Fugaku

REST API
SaaS 

via API

service
provider

user

A direct connection between Oracle Clou
d Infrastructure (OCI) has established b
y ”cloud connection service” by NII

NEWT2.0(*) based implem
entation (alpha version) ha
s released at October 2020.

(*)https://newt.nersc.gov

In future, the API is expected to b
e a standard API for HPC systems i
n many HPC centers

Frontend/PrePost on BM/VM

Batch job scheduler
CaaS/FaaS
(planned)

2nd layer 
storage

FEFS<->CIFS/S3
gateway
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Collaboration Partners

https://www.riken.jp/pr/news/2021/20210113_1/index.html

Recently, Fujitsu and Rescale, Inc. joined our collaboration.
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 Compute units utilized (FP16)
 A64FX: 32-element vector FP16 & FP64 mixed precision
 GPUs: FP16 Matrix Engine (Tensor Core) & FP64 mixed precision

 FP16 vast difference in efficiency, while FP64 efficiency similar
 See our latest paper “Matrix Engines for High Performance Computing: A 

Paragon of Performance or Grasping at Straws?” [IEEE IPDPS 2021] 
https://arxiv.org/abs/2010.14373

 We will also release our code as OSS RSN to become a standard like HPL 

Fugaku HPL-AI Results Comparisons (update Jun 2021)

Main 
Processor

HPL-AI
Measured 

Performance

FP16 Peak 
Performance
(full machine)

Efficiency
HPL-AI 

Performance
/Chip

Top500 /Linpack 
FP64 Measured 

Performance

FP64 Peak 
Performance

Efficiency

1. Fugaku
Fujitsu 

A64FX
2.00 EF 2.14 EF 93.2% 12.6TF 442.01 PF 537.21 PF 82.3%

2. Summit
NVIDIA 

V100
1.15 EF 3.46 EF 33.2% 42.6TF 148.60PF 200.79 PF 74.0%

3. Selene
NVIDIA 

A100
0.63 EF 1.40 EF 45.0% 140.6TF 63.46 PF 79.22 PF 80.1%

Note: Selene node count based on prerelease info

https://arxiv.org/abs/2010.14373


Going Arm, Nov. 4th, 2020

Development of DL software stack for Arm SVE

Framework & oneDNN

porting & tuning

Naoki Shinjo,  Akira Asato,   

Atsushi Ike, Koutarou Okazaki,        

Yoshihiko Oguchi, Masahiro 

Doteguchi, Jin Takahashi, 

Kazutoshi Akao, Masaya Kato, 

Takashi Sawada,

Naoto Fukumoto, Kentaro

Kawakami,

Naoki Sueyasu, Kouji Kurihara, 

Masafumi Yamazaki, Takumi 

Honda

Tuning for Fugaku

Satoshi Matsuoka, High Performance Artificial Intelligence Systems 

Research Team Leader

Kento Sato, High Performance Big Data Research Team Leader

Kazuo Minami, Application Tuning Development Unit Leader

Akiyoshi Kuroda, Application Tuning Development Unit 

Fugaku

AI 

project

Fugaku AI project
Signed on Nov. 25, 2019

Copyright 2020 FUJITSU LIMITED

Shigeo MitsunariTechnica

l support
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Going Arm, Nov. 4th, 2020

FX1000

A64FX preliminary results for Deep Learning

 Setup

 Using the same number of CPU 

cores

• FX1000 single node (A64FX 2.2 GHz)  vs.  

Xeon Platinum 8268 (24 core, 2.9GHz) x2

 ResNet50 (image classification)

 OpenNMT (natural lang. processing)

 Results

 Performance:

• Almost the same performance as Xeon

 Energy efficiency:

• Up to 2.8x more efficient over Xeon

Training using fp32, PyTorch v1.5.0, OneDNN_aarch64, batch size 75 x

4proc.

Training using fp32, PyTorch v1.6.0, OneDNN_aarch64, batch size 3850 x

2proc.
Copyright 2020 FUJITSU LIMITED

0 0.5 1

OpenNMT

ResNet50

Relative speed up ratio

FUJITSU A64FX Xeon Platinum 8268 x 2s

0 1 2 3

OpenNMT

ResNet50

Relative power efficiency ratio

FUJITSU A64FX Xeon Platinum 8268 x 2s
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Exploring and Merging Different Routes to
O(100,000s) Nodes Deep Learning

Data-parallel Model-parallel (K-FAC)

A model-parallel 2nd-order method 
(K-FAC) trains ResNet-50 on 1K GPUs
in 10 minutes [4]

TokyoTech, NVIDIA, RIKEN, AIST

[1] M. Fareed et al., “A Computational-Graph Partitioning Method for Training Memory-Constrained DNNs”, Submitted to PPoPP21 
[2] M. Wahib et al., “Scaling Distributed Deep Learning Workloads beyond the Memory Capacity with KARMA”, ACM/IEEE SC20 (Supercomputing 2020)

[3] Y. Oyama et al., “The Case for Strong Scaling in Deep Learning: Training Large 3D CNNs with Hybrid Parallelism,” arXiv e-prints, pp. 1–12, 2020.

[4] K. Osawa, et al., “Large-scale distributed second-order optimization using kronecker-factored approximate curvature for deep convolutional neural networks,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2019-June, pp. 12351–12359, 2019.

[5] J. G. Pauloski, Z. Zhang, L. Huang, W. Xu, and I. T. Foster, “Convolutional Neural Network Training with Distributed K-FAC,” arXiv e-prints, pp. 1-11, 2020.
[6] Y. Oyama et al., “Accelerating Deep Learning Frameworks with Micro-Batches,” Proc. IEEE Int. Conf. Clust. Comput. ICCC, vol. 2018-September, pp. 402–412, 2018.

Data-parallel Model-parallel Data-parallel

Layer-wise distribution and
inverse-free design further
accelerate K-FAC [5]

UT Austin, UChicago, ANL

Model-parallelism
enables 3D CNN training
on 2K GPUs with 64x
larger spatial size and
better convergence [3]

Matsuoka-lab, LLNL, LBL, RIKEN

Merging Theory and Practice

Porting High Performance CPU-
based Deep Neural Network 

Library (DNNL) to A64FX chip
Fujitsu, RIKEN, ARM

MocCUDA: Porting CUDA-based Deep
Neural Network Library to A64FX and
(other CPU arch.)
RIKEN, Matsuoka-lab, AIST

Engineering for

Performance Foundation

0

10

20

30

40

50

60

70

80

90

128 256 512 1024 2048
0

10

20

30

40

50

60

512 1024 2048

KARMA (DP Parity)MP+DP Megatron-LM

MP+DP Megatron-LM (Opt. Gradient Ex.)

T
im

e
 p

e
r 

E
p

o
c
h

 (
H

o
u

rs
)

0

10

20

30

40

50

60

70

80

90

512 1024 2048

ZeRO + KARMA

ZeRO KARMA

GPUs GPUs GPUs

Megatron-LM Turing-NLG

ATT. H.   = 20

HIDDEN  = 1920
LAYERS  = 54

PARAM.  = 2.5B

ATT. H.   = 32

HIDDEN  = 3072
LAYERS  = 72

PARAM.  = 8.3B

ATT. H.   = 28

HIDDEN  = 4256
LAYERS  = 78

PARAM.  = 17B

Deep Learning 
Model

Memory Consumption 
Estimations

Compute Times
Communication Times 

(estimation)

Python, C/C++, Java

Cost ModelComputational 
Graph

Scheduler Emulator

Offline Profiling

Deep Learning Distributed Execution Engine

Device Device Device DeviceHost

Mapping

2 3 4

5

ParDNN

1 A

B , 2 C, 2

D, 1 E, 1 F, 2

G, 1

H, 1

I , 3

J, 1

K , 3

L

0

0

1

1 1

2
3

1

1 1

1

1

3
4

0

NodeID DeviceID

B 0

C 1

… …

Non-intrusive graph-based
partitioning strategy for
large DNN models achieving
superlinear scaling [1]

AIST, Koc U.

KARMA: Out-of-core distributed training
(pure data-parallel) outperforming SoTA
NLP models on 2K GPUs [2]
AIST, Matsuoka-lab, RIKEN

Layer-wise loop splitting accelerates
CNNs [6]
Matsuoka-lab, ETH Zurich
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Visualize all of the operation and service (cont`d)

infrastructure HPC system
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Recent power consumption trend

last 30 days power consumption history

site total

Fugaku

average power consumption
~22-23MW(site total)
~18-19MW(Fugaku)
“DoE Goal: Exascale at 20 MW”

Full node HPCG/HPL measurement

max power consumption (HPCG)
42.70MW(site total)
34.66MW(Fugaku)
power swing ~15MW
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Job filling rate (-8/25)

March
64.3%

April
28.3%

May
38.8%

June
52.3%

July
71.6%

August
82.2%



Prediction of conformational 
dynamics of proteins on the 

surface of SARS-Cov-2

Fragment molecular orbital 
calculations for COVID-19 proteins

Simulation analysis of pandemic phenomena

Prediction and Countermeasure for Virus 
Droplet Infection under the Indoor Environment

Medical-Pharma Societal-Epidemiology

(Makoto Tsubokura, RIKEN / Kobe University)

(Nobuyasu Ito, RIKEN)

(Yuji Mochizuki, Rikkyo University)

((Yuji Sugita, RIKEN)

(Yasushi Okuno, RIKEN / Kyoto University)

Large-scale, detailed 
interaction analysis of COVID-
19 using Fragment Molecular 
Orbital (FMO) calculations 
using ABINIT-MP

MEXT Fugaku Program: Fight Against COVID19
Fugaku resources made available a year ahead of general production

(more research topics under international solicitation, 
also joined US-lead COVID-19 High Performance Computing Consortium)

Large-scale MD to search &  identify 
therapeutic drug candidates showing 
high affinity for COVID-19 target 
proteins from 2000 existing drugs

GENESIS MD to interpolate 
unknown experimentally 
undetectable dynamic behavior of 
spike proteins, whose static 
behavior has been identified via 
Cryo-EM

Combining simulations & analytics of 
disease propagation w/contact tracing 
apps, economic effects of lockdown, 
and reflections social media, for 
effective mitigation policies

Massive parallel simulation of 
droplet scattering with airflow 
and hat transfer under indoor 
environment such as commuter 
trains, offices, classrooms, and 
hospital rooms

Exploring new drug candidates 
for COVID-19

Host genetic analysis for 
severe COVID-19

Whole-genome sequencing 
of severe cases of COVID-19 
and mild or asymptomatic 
infections, and identify risk-
associated genetic variants 
for severe disease

(Satoru Miyano, Tokyo Medical and Dental University)
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 Basically the risk of airborne transmission can be determined by four factors:

 Behavior (breathing, speaking, singing…), Staying time, Room volume, Ventilation rate

 How droplets disperse in the air?

 COVID 19 does not cause as strong airborne infections as tuberculosis and measles, 

and thought to be at high risk of inhaling droplets especially smaller than 5 microns 

at close range to the infected person. 

 Evaluation based on “instantaneous homogeneous dispersion” does not work! 

Difficulty in COVID 19 transmission

C.Y.H. Chao et al./Characterization of expiration air jets and droplet size distributions immediately at the mouth opening/Aerosol Science 40(2009)122-133

Droplet size in the case of coughing

Aerosol Droplets
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 Having been developing since 2012.

 Many achievements on the supercomputer K, for vehicle aerodynamics, combustion systems, and high-rise buildings.

 COVID-19 pandemic early in 2020, when we were tuning “CUBE” on the supercomputer “Fugaku”

Software “CUBE” realizing the Society 5.0
Realizing a huge number of simulations at very high speed including pre- and post-processing

IC combustion engine simulation by CUBE on the 
supercomputer K and fuel spray injection.

Droplet/aerosol dispersion simulation on the supercomputer “Fugaku”



Complex Unified Simulation Framework: CUBE

Hierarchically structured Finite Volume Method
• A solver for coupled phenomena: fluid/structure/acoustics/chemical 

reaction…
• Building Cube Method for the unified data structure (Nakahashi et al., 

2003)
• Easy tune for both single node and parallel performance

• Immersed Boundary Method (Fadlun et al., 2002)
(1) Dirty CAD treatment (Onishi et al., 2013)
(2) Moving Boundary Method (Bale et al., 2016)
(3) Unified Compressible/Incompressible analysis (Li)
(4) Unified Fluid/Structure analysis (Nishiguchi)

26

K. Nakahashi, Building-Cube Method for Large-Scale, High Resolution Flow Computations, Am. Inst. Aeronaut. Astronaut. 42nd AIAA (2004) 1–9. 



Eulerian Air and Lagrangean Spray Coupling
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Conservation Equations

Navier-Stokes

Species transport

time steppingEulerian Mesh

Spray equations

Particle tracking

Lagrangian Particles

Flow Solver

𝜕U

𝜕𝑡
+ 𝛻 ⋅ 𝐅 = S, 

Drag Model Evaporation Model

𝜏𝑑 =
𝜌𝑑𝑑𝑑

2

18𝜇
𝐵𝑀 =

𝑌𝑉,𝑠 − 𝑌𝑉
1 − 𝑌𝑉,𝑠

𝑌𝑉,𝑠 =
𝑋𝑉,𝑠

𝑋𝑉,𝑠 + 1 − 𝑋𝑉,𝑠 𝑊/𝑊𝑉
𝑋𝑉,𝑠 =

𝑃𝑠𝑎𝑡
𝑃

𝑆ℎ = 2 + 0.55𝑅𝑒𝑠
1/2

𝑆𝑐1/3

Wall Reflection Model

𝑊 - Average molecular wt of the gas phase
𝑊𝑉 - Molecular wt of water vapor
𝑃𝑠𝑎𝑡- Saturated vapor pressure
𝑌𝑉,𝑠 - Vapor surface mass fraction
𝑌𝑉 - mass fraction of vapor in the far field.
𝑋𝑉,𝑠 -Mole fraction of vapor at droplet surface
Sc – Schmidt number
Pr – Prandtl number

𝑆𝜌𝑌𝑘 = −
1

Δ𝑉
∑
𝑛

𝑑𝑚𝑑,𝑘

𝑑𝑡



Face Masks of Different Filter Materials
Experimental setups for the simulation input.(Conducted at Toyohashi Institute of Tech.)
• The filter efficiency and the pressure drop of each material as input, we conduct mask simulation and 

investigate how the filter materials affect droplet and aerosol spreading. 
• Filter efficiency: counting particles before and after each material using particle counter (0.3μm～10μm).
• Pressure drop: measuring pressure before and after each material. 
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Experimental setups for the pressure drop

提供：豊橋技科大・理研・神戸大，協力：京工繊大・阪大・大王製紙

Mask fit tester（Kanomax）Model 3000
Particle counter（Kanomax）Model 3889

Experimental setups for the filter efficiency

Compressor Flow valve Flow meter Pressure gauge
Model head

Pipe: Φ40mm 

Differential pressure gauge

Sibata Scientifc Tech. Ltd. ISP-3-20D
0 – 200 Pa (min range: 0.1Pa)

SMC PFM750S-F01-F
(0-50 L/min)

Pressure drop of Mask

Pipe: Φ40mm

Range of flow rate
5 L/min – 50 L/min

Pressure drop of 
material

Mist generator

Counting particles 
inside the mask

Counting particles outside 
the mask
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Face Mask’s deformation by FEM



Face Masks of Different Filter Materials
How the filter materials of masks affect droplet/aerosol spreading?
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Non-woven ① N95

Urethane 

Non-woven ②

Fabric (cotton) Fabric (polyester)

Yellow：leaking from the gap
Red：trapped by the mask
Blue：permeating through the mask
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Capacity computing made only by “Fugaku”

Partition in a office Opening window in a commuter train

Concert hall

Opening window in a school room

Chorus activity

On the dining table

Sports face mask

Karaoke box room

Double face mask

Social distance while walking

Commuter bus
Airplane

Taxi

Pub restaurant

Pub restaurant

Olympic stadium
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Risks at a izakaya pub. 

6.7m6.5m

2.72m

Fresh air supply
540m3/h
20 deg.

Exhaust (ventilation)
440m3/h

Kitchen Duct
1156 m3/h

Air Conditioner (no 
ventilation)
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 One person infected.
 Indexing each droplet 

emitted from each person 
in the room.

 Counting total droplets 
reaching from each person 
to each person for one 
hour.

Risks at a Izakaya Pub. 
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Infection probability for one-hour stay

Exposure duration: 60 mins
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ID at risk    

Risks on table A

Risks on table B

Risks on table B

Infection probability when you stay one 
hour with one unrecognized infected 
person.

Expected new infected person in this room 

is 4.13% times 15 = 0.62 person

Risks when an infected person stay 
that position.

Risks when you stay that position.
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Effect of far seating

Close seating Far seating



 Expected new infected person reduced from 0.62 to 0.18
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Effect of far seating
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 Effect of countermeasures by expected new infected person

Expected new infected person

No=300 No=900 No=2000

Only Ventilation 1.00 0.61 0.38

Ventilation
+AC&Kitchen duct

0.49 0.18 0.0844

Ventilation
+AC&Kitchen duct
+partition

0.25 0.11 0.053

Ventilation
+AC&Kitchen duct
+far seating

0.33 0.12 0.056

Small room

0

0.2

0.4

0.6

0.8

1

1.2

Only ventilation Ventilation
+AC&kitchen duct

Ventilation
+AC&kitchen duct

partition

Ventilation
+AC&kitchen duck

+far seating

Expected new infected person in the Izakaya for the one 
infected person staying for one hour

No=300

No=900

No=2000

Infectivity
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Integrated droplet/aerosol infection risk 
assessment system
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(Host cells, Pathogen, Adaptive Immune System)
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Numerical human body Numerical respiratory tract

Precise reproduction of body temperature

Precise reproduction of human breathing Reproduction of nasal/oral cavity and 
respiratory tract

Prediction of deposit distribution of 
droplet/aerosol on the airway surface and its 
dependence of droplet size.

Infection risk assessment based on 
the bio-regulation model

Droplet/aerosol dispersion in 
indoor environments

Generation of droplet/aerosol 
inside human body

Coupling simulation of droplet/aerosol and indoor flow

Indoor environment evaluation based on HPC simulation

Breath flow rate, droplet size distribution

Quantitative evaluation of infection risk

Condition of droplet/aerosol generation
(breathing, speaking, coughing, sneezing…) Indoor environment and human allocation

Biological information of an at-risk person

dp=5 nm dp= 100 nm

Biological information of an at-risk person Biological information of an at-risk person and target virus
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“Smart Design” in the Society 5.0 Era
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Sub-Task A (Kobe Univ.)
AI supported Vehicle Aerodynamics 

Optimization Considering Stylists’ Design 
Space

Sub-Task B (Tokyo Tech.)
Performance Design of Transforming 

Cities under Natural Disturbance  

Sub-Task C (Kyushu Univ.)
Indoor-Environment Design Robust 

for the Infectious Diseases

Sub-Task D (Kyoto Univ.)
Carbon-Free Gas Turbine Engine 
Design by the Multi-Component 

Unified Simulation

Computational 
Science

Data Science
Computer 

Science

R-CCS’s Trinity Researches for the Advanced Use of HPC

Supporting the software (CUBE, FrontFlow/red) and data science technology (AI, Data assimilation) usage/tuning on the supercomputer “Fugaku”  

Toward the social Implementation through the tight collaboration and system development with industries



Academia-Industry-Government Collaboration
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National Univ. of Singapore

Steering members

Cooperative members

Administrative organizations

Kobe City
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 We have been staging multiple press 
conferences on the latest research 
results

 Extremely high interest from the media, 
with immediate national news 
coverage

 Most people in Japan have seen the 
Fugaku COVID19 news, esp. droplet 
simulation, with high trust in being 
scientifically grounded

 Visualization extremely effective in 
raising public understanding & 
awareness of COVID19 & its mitigation

 Prime Minister Suga holds a press 
conference 22 Nov., urging everyone to 
wear masks even during group dining, 
as “it’s effectiveness has been proven 
by a supercomputer (Fugaku)”.

Timey Simulations and Media Dissemination



Performance projection of  many-core CPU systems based on IRDS roadmap
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A

Predictions based on the IRDS Roadmap(2020 ed.), extrapolation of 
traditional many core architectures relying merely on advances of 
semiconductor technologies will achieve only 1.8EFLOPS Peak (3.37x 
c.f. Fugaku), if a machine with broad applicability will be built

• Methodoogies(CPU part):
Assumptions from IRDS Roadmap 
Systems and Architectures

‒ Cores/socket=70 cores 
‒ SIMD width=2048-bit x 2
‒ Clock frequency=3.9GHz
‒ Socket TDP = 351W

• System assumptions
‒ System Power=30, 40, 50MW
‒ PUE=1.1
‒ CPU power occupy=60,70,80%

NGACI white paperhttps://sites.google.com/
view/ngaci/home

From NGACI white paper

最もアグレッシブなシステム構成（50MW電力バジェット、
CPUで80%電力消費）においても1.8EF程度の性能と予測

Socket
Cores

Injection 
BW(Tb/s)

Storage
(EBytes)



Transistor Lithography Scaling
(CMOS Logic Circuits, DRAM/SRAM)

Loosely Coupled with Electronic Interconnect

Data Data

Hardware/Software System APIs
Flops-Centric Massively Parallel Architecture

Flops-Centric Monolithic System Software

Novel Devices + CMOS (Dark Silicon)
(Nanophotonics, Non-Volatile Devices etc.)

Ultra Tightly Coupled w/Aggressive 
3-D+Photonic Switching Interconnected

Hardware/Software System APIs
“Cambrian” Heterogeneous Architecture

Cambrian Heterogeneous System Software

Heterogeneous CPUs + Holistic Data

Data Data

Homogeneous General Purpose Nodes 
+ Localized Data

Reconfigurable
Dataflow

Optical
ComputingDNN&

Neuromorphic

Massive BW
3-D Package

Quantum
ComputingLow Precision

Error-Prone

Non-Volatile
Memory

Flops-Centric Monolithic Algorithms and Apps Cambrian Heterogeneous Algorithms and Apps

Compute 
Nodes

Gen CPU Gen CPU

汎用CPU Gen CPU

~2025
M-P Extinction

Event 

Many Core Era
Post Moore 
Cambrian Era

Compute 
Nodes

Compute 
Nodes

Compute 
Nodes



 Towards 2030 Post-Moore era

• End of ALU compute (FLOPS) advance
• Disrupritve reduction in data movement 

cost with new devices, packaging
• Algorithm advances to reduce the 

computational order (+ more reliance on 
data movement)

• Unification of BD/AI/Simulation towards 
data-centric view

Post-Moore Algorithmic Development

Bandwidth Centric

Sparse NN
SVM FFT CGO(n) QM 

𝑂(𝑛)𝑂(2𝑛)

Quantum
Alg.

New 
Paradigm

Quantum CPU and/or GPU + α (Data Movement Acceleration, eg CGRA?)

H-MatrixcGraph

Computational
Complexity

Machine Learning, HPC Siulations

Data movement reduction

DL・Quantum ChemCombinatorial 
Optimization

Lower order algorithm

Advanced 
Algorithms

Quantum
Chem

Architecture

Algorithm

Domain

Data Movement (BYTES) Centric
Search & 
OptiizationNP Hard

Categorization of Algorithms and Their Doamains

 “New problem domains require new computing accelerators”

 In practice challenging, due to algorithms & programming

Copyright 2021 FUJITSU LIMITED

Data Movement (bandwidth) bound

HF SVM FFT CGCNN

𝑂(𝑛3) 𝑂(𝑛2) 𝑂(𝑛)𝑂(2𝑛)

Quantum
Algorithms

Compute BoundNew Paradigm
Quantum& 

Digital
Annealer

Quantum
Gates GPU+MM CPU or GPU w/HBM etc.

H-
Matrix

Graph

Computational
Complexity

Machine Learning, HPC Simulations

Traditional but Important

Deep Learning
Quantum Systems

Combinatorial
Optimization

“Innovation Challenge) New DL, Vision

Izzing
Model

Crypto etc.

Architecture

Algorithms

Domain

Data Movement (BYTES)
Centric

Search&
Optimization FLOPS CentricNP Hard

1

2021 present day

𝑂(𝑛 log 𝑛)

2030

Latency CentricNeuroM



Our Project: Exploring versatile HPC architecture and system software technologies
to achieve 100x performance by 2028
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Problems to be solved and goals to be achieved

• General-purpose computer architectures that will accelerate a wide range of applications in 
the post-Moore era have not yet been established.

• What is a feasible approach for versatile HPC systems based on bandwidth improvement?

• Goal: to explore architectures that can achieve 100x performance in a wide range of 
applications around 2028

目標とするノードアーキテクチャの例

gen-purpose 
many-core CPUs

other 
approaches
（like CGRA）

near-
memory

proc

new 
memory
device

new 
memory 
hierarch

y, 
connecti

on for 
cores

near-
memory

proc

new 
memory
device

Subtask1.1 Performance 

characterization and modeling with 

benchmarks to identify directions 

for exploration and improvement

(Riken R-CCS)

Subtask1.2  Exploring a 

reconfigurable vector data-

flow architecture (CGRA) that 

can exploit increased data 

transfer capability

(Rijen R-CCS)

Subtask3 Exploring near-
memory computing for highly 
effective bandwidth and 
cooling efficiency for general 
purpose computing (U-Tokyo)

Approaches and subtasks
• Exploration of future CPU node 

architectures and necessary 
technologies

2018 2019 2020 2021 2022

Plan
Explore individual technologies Integrate promising technologies 

for a target node architecture

Developing 
stage ...

2023～

Subtask2  Exploring innovative 

memory architectures with ultra-

deep and ultra-wide bandwidth

(Tokyo Tech.)

Subtask4 Exploration of node 

architectures as extension of 

existing many-core CPUs with 

non von-Neumann methods

(unnamed company)

Planned


