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Growing demands on networks - flow optimization

 Scientific collaborations and
data-centric research at the “regional,
national and global scale.”

« Ever increasing rates of data
production from scientific experiments
(LHC, genomics, astronomy, physics,
..)

« Commercially, movement of logs
(transactions, cyber) and training data

« Adoption of 5G and new applications
(telemetrics, Al on demand, xR)
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Problem Positioning: The Root Cause Was Hiding

Single-bottleneck view
@ Symptom

 Structure of the congestion problem &
in data networks:

* The single-bottleneck problem is
the tip of the iceberg.

* The bottleneck structure is the
submerged portion.

root cause > Bottleneck structure
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Theory of Bottleneck Structures

Bottleneck structure:
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[1] Mathematics presented at ACM SIGMETRICS (June 2020) and ACM SIGCOMM (August 2021): https://bit.ly/3e GOPrb
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Theory of Bottleneck Structures

perturbation ~ [,

[1] Mathematics presented at ACM SIGMETRICS (June 2020) and ACM SIGCOMM (August 2021): https://bit.ly/3e GOPrb
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Gradients Through Bottlenecks - Estimate Effects of Changes

[1] Mathematics presented at ACM SIGMETRICS (June 2020) and ACM SIGCOMM (August 2021): https://bit.ly/3e GOPrb
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Gradients Through Bottlenecks - Estimate Effects of Changes

[1] Mathematics presented at ACM SIGMETRICS (June 2020) and ACM SIGCOMM (August 2021): https://bit.ly/3e GOPrb
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Gradients Through Bottlenecks - Estimate Effects of Changes

[1] Mathematics presented at ACM SIGMETRICS (June 2020) and ACM SIGCOMM (August 2021): https://bit.ly/3e GOPrb
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G2: Analytical Environments and REST APl Programmable Interface

Flow logs
(e.g., NetFlow)

G2
Analytics

Analytical environments

Topology info

python
REST API

print("Hello world!")

Programmable interface
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Application 1: Elephant Flow Detection
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Application 2: Identification of Max-Throughput Paths

* Google's B4 network
« Background traffic: flows connecting every pair of datacenters between the US and
Europe (both directions).

« Goal: transfer 1 terabyte of data from datacenter 11 (EU) to datacenter 4 (US) using
the highest-throughput path available.
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Application 2: Identification of Max-Throughput Paths

ras = 1.429

Traditional lowest-cost path: T

* Flow performance improvement of 74.95% without affecting lower throughput flows
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Application 3: Capacity Planning in Fat-Tree (Clos) Networks
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Application 4: Acceleration of Time-Bound Constrained Flows

Google's B4 SDN WAN Network (SIGCOMM 2017)
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Application 5: Optimal Design of Data Centers and Supercomputers

Let a be the skeweness parameter of a dragonfly topology
with parameters a, g and h. Then, the following design mini-
mizes the maximum flow completion time of the network:
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Application 6: SLA Breach Detection and Recovery

* Google's B4 network

« Situation: Red flow performs at 1.429Gbps, but its SLA requires a minimum of
2Gbps.
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Bottleneck Structures and Gradients Can Be Computed in Real Time

Network: Model:
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GradientGraph™ Analytics: Platform

Reservoir Labs, Inc.

Network Topology Dashboard
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GradientGraph™ Analytics: Platform

Reservoir Labs, Inc.

Flow Gradient Graph Dashboard

Flow Gradient Graph Panel

Toggle Filter  Reload All
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GradientGraph Analytics: Routing through Low Congestion Paths

Routing Dashboard

Routing Panel
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GradientGraph™ Analytics: Platform

Flow Gradient Graph Panel
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G2: Optimizing the Entire Network Lifecycle
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SC21 Demo: SENSE + G2 + NetPredict + P4 Use Case

"Laboratory use case" using ESnet SENSE/NetPredict services, the PRP federated k8s clusters, and Reservoir
Labs G2 instance to resolve congestion in real-time

(1) Generate long-lasting flows with background traffic

(2) Create congestion on one or more segments

(3) Compute the bottleneck structure and identify the
impactful flows using G2

Open loop: Closed loop:

(4) Predict next state of the network using NetPredict,

(5) Use G2 Flow Gradient Graph to compute best alternative
path recommendations

(6) Re-route flows onto their best alternative paths using P4

(7) Validate the impact of re-routing flows is as predicted
and that congestion has been resolved

(8) Validate the impact of re-routing flows is as predicted

Near-term operational goals:

e Embed the 4-step sequence in production
operational networks: (1) congestion detection, (2)
impactful flow-group prediction and identification,
(3) agile flow steering, (4) verification of congestion
mitigation

e Tune sequence of steps and decision parameters

e Develop success metrics

e Predict and optimize using machine learning

Reservoir Labs in collaboration with GNA-G, CalTech, PRP, ESnet, Columbia and Yale
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Current Status

Initial deployment with Research and Educational Networks and ESnet

Looking forward to collaborations to test the technology in data center and
supercomputer fabrics

See you at SC21 - stop by SCinet to talk with us!

More information at http://www.reservoir.com/gradientgraph
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