ercomputer

ST fos s o W

Exploring Programming Models for LUMI Sup
HPC User Forum September 2021

George S. Markomanolis
ientist, CSC - ter for Science

Lead HPC

LUMI, the Queen of the North

LUMI is aTier-o GPU-accelerated

supercomputer that enables the
convergence of high-
performance computing,

artificial intelligence, and high-

performance data analytics.

* Supplementary CPU
partition

* ~200,000 AMD EPYC
CPU cores

Possibility for combining
different resources within a
single run. HPE Slingshot
technology.

30 PB encrypted object
storage (Ceph) for storing,
sharing and staging data

LUMI

LUMEG: N

Tier-o GPU partition: over
550 Pflop/s powered by
AMD Instinct GPUs

Interactive partition with 32
TB of memory and graphics
GPUs for data analytics and
visualization

GPU
LUMI-C: Partition U.I’)h::-aoz
- Analytics —_
Partition Bartition
LUMI-K: ——
Cocr';ta|3er High-speed Accelerated
oy interconnect
Service Storage
LUMI-Q: LUMI-P-
Emerging Lustre
tech LUMI-O: Storage
Object
Storage
Service

N

www.lumi-supercomputer.eu

7 PB Flash-based storage
layer with extreme I/O
bandwidth of 2 TB/s and
|IOPS capability. Cray
ClusterStor E1000.

80 PB parallel file system

#lumisupercomputer #lumieurohpc

AMD GPUs (MI100 example)

Shader Engine

Shader Engine

Shader Engine

Shader Engine

cu cu cu cu
s 5
3 3
- (=]
8 5
0
2 cl cu cu cu g
g g
= 3
ACE |[ACEHWS
— L2 L2 —
ACE |ACE [DMA]
cu cu cu cu
g H
5 2
o fa)
=)
S =
£ S
= z
cu cu cu cu
Shader Engine Shader Engine Shader Engine Shader Engine
PCIGen4 M ultimedia Engine | | XGMI Links

INFINITY FABRIC

www.lumi-supercomputer.eu

#lumisupercomputer #lumieurohpc

LUMI

LUMI will have the
next generation of
AMD instinct GPU

Differences between HIP and CUDA

« AMD GCN hardware wavefronts size 1s 64 (like warp for
CUDA), some terminology is different

* Some CUDA library functions do not have AMD equivalents

» Shared memory and registers per thread can differ between
AMD and NVIDIA hardware

www.lumi-supercomputer.eu #lumisupercomputer #lumieurohpc

LUMI

Porting Codes to LUMI (1)

Parallel code w/out GPU

Do you want to try
new libraries?

Alpaka, SYCL
Kokkos, Raja
(not all programming
languages supported)

Does it have
OpenMP?

Advanced programmer with
knowledge on GPUs and
enough available resources
and time

Use Reveal'tool or port through
profiling and identify important
loops to OpenMP

Profil

tune OpenMP calls
data transfers

Is the code in C/C++7 Is the code in Fortran?

Profile, identify kernels,
use hipfort, prepare the kernels
kel il et according to the instructions for
p Fortran, port kernels to HIP

and tune

1 Reveal will work good with Fortran codes and
less with C, especially C++

LUMI

LUMI

orting Codes to LUMI (1)

Do you want to try

Parallel code with GPU new libraries and
re-write parts of the code?
\ Alpaka, SYCL
Kokkos, Raja
{not all programming
S languages supported)

Isr‘tFortrancode?‘ ‘ Cray! ‘ ‘Ctacc!Ftaccz‘ _‘ [elolecs ‘

Is it C/C++ code?

Y

Use hipfort and
prepare the kernels|

Use hipify tools s performance

g Do you want to port
Qoo

the code Lo OpenMP?

Port the OpenACC calls to OpenMP
Enjoy! ‘ \1Proﬂie and tune the OpenACC calls Offloading to GPU and profile them.
Tools such as Clacc/Flacc could help®

|5 performance
d?

1 HPE will support OpenACC for Fortran, C, and
Fix code, if any, that was not C++. Currently is supported only for Fortran and
converted to HIP (far C/C++). OpenACCv2.0

Profile and tune, use hip libraries

where possible

2 Research projects, not supported by the
vendor, not fully developed yet

3 ORNL has a contract with Mentor Graphics to
deliver GCC with OpenACC, nor supported by the
vendor

4 Depending on the programming language and
if Clacc/Flacc can handle all the calls

LUMI

BabelStream

* A memory bound benchmark from the university of Bristol
* Five kernels

o add (a[i]=b[i]+c[i])

o multiply (a[i]=b*c[i])

o copy (a[il=b[i])

o triad (a[i]=b[i]+d*c[i])

o dot (sum = sum+d*c[i])

www.lumi-supercomputer.eu #lumisupercomputer #lumieurohpc

LUMI

OpenMP Offloading

* Some basic OpenMP useful constructs:

o #pragma omp target enter/exit data map
o #pragma omp target teams distribute parallel for simd
o thread_limit(X) num_teams(Y)

* OpenMP 5.0, what is new: https://www.openmp.org/spec-
html/5.0/openmpse71.html

* OpenMP 5.1, what is new: https://www.openmp.org/wp-
content/uploads/OpenMP-API-Additional-Definitions-2-0.pdf

www.lumi-supercomputer.eu #lumisupercomputer #lumieurohpc 8

LUMI

Improving performance on BabelSiream for MI100

* Original call:

#pragma omp target teams distribute parallel tor simd

* Optimized call

#pragma omp target teams distribute parallel for simd
thread limit(256) num teams(240)

e For the dot kernel we used 720 teams

www.lumi-supercomputer.eu #lumisupercomputer #lumieurohpc 9

LUMI

BabelStream, fune AOMP

BabelStream (MI100)

1000000

SODO00 — .
FO0000 — - " mCopy
BO0000 - | W Mul
Add
&2 500000 - | ®Triad
= 400000 - | Dot

100000 - : -

(i : S|

AOMP-11.12-0 AOMP* 11-12-0

www.lumi-supercomputer.eu #lumisupercomputer #lumieurohpc 10

LUMI

Introduction to HIP

* HIP: Heterogeneous Interface for Portability 1s developed by AMD to
program on AMD GPUs

* It is a C++ runtime API and it supports both AMD and NVIDIA
platforms

* HIP is similar to CUDA and there is no performance overhead on
NVIDIA GPUs

* Many well-known libraries have been ported on HIP

* New projects or porting from CUDA, could be developed directly in
HIP

https://github.com/ROCm-Developer-Tools/HIP

www.lumi-supercomputer.eu #lumisupercomputer #lumieurohpc

LUMI

Hipify

* Hipify tools convert automatically CUDA codes

* It 1s possible that not all the code i1s converted, the remaining
needs the implementation of the developer

* Hipify-perl: text-based search and replace
* Hipify-clang: source-to-source translator that uses clang compiler

* Porting guide: https://github.com/ROCm-Developer-
Tools/HIP/blob/main/docs/markdown/hip porting guide.md

www.lumi-supercomputer.eu #lumisupercomputer #lumieurohpc

LUMI

Hipity-perl

* It can scan directories and converts CUDA codes with replacement of the
cuda to hip (sed — ’s/cuda/hip/g’)

$ hipify-perl --inplace filename

It modifies the filename input inplace, replacing input with hipified
output, save backup in .prehip file.

$ hipconvertinplace-perl.sh directory

It converts all the related files that are located inside the directory

www.lumi-supercomputer.eu #lumisupercomputer #lumieurohpc 13

LUMI

Differences between CUDA and HIP API

CUDA HIP

#include “cuda.h” #include “hip/hip _runtime.h”
cudaMalloc(&d_x, N*sizeof(double)); ~ hipMalloc(&d x, N*sizeof(double));

cudaMemcpy(d_x,x,N*sizeof(double),

. .
cudaMemcpyHostToDevice); hipMemcpy(d_x,x,N*sizeof(double),

hipMemcpyHostToDevice);

cudaDeviceSynchronize(); hipDeviceSynchronize();

www.lumi-supercomputer.eu #lumisupercomputer #lumieurohpc 14

LUMI

Launching kernel with CUDA and HIP

CUDA HIP
kernel name <<<gridsize, hipLaunchKernelGGL(kernel name,
blocksize,
shared mem_size,
stream>>>
();

www.lumi-supercomputer.eu #lumisupercomputer #lumieurohpc 15

NVIDIA

CuBLAS

CURAND

CUFFT

CUSPARSE

NCCL

CuB

HIP
hipBLAS
hipRAND
hipFFT

hipSPARSE

hipCUB

ROCm

rocBLAS

rocRAND

rocFFT

rocSPARSE

RCCL

rocPRIM

www.lumi-supercomputer.eu

Libraries (not exhaustive)

Description

Basic Linear Algebra Subroutines

Random Number Generator Library

Fast Fourier Transfer Library

Sparse BLAS + SPMV

Communications Primitives Library based on the MPI equivalents

Low Level Optimized Parallel Primitives

#lumisupercomputer #lumieurohpc

LUMI

16

LUMI

Benchmark MatMul cuBLAS, hipBLAS

* Use the benchmark https://github.com/pc2/OMP-Offloading

* Matrix multiplication of 2048 x 2048, single precision

 All the CUDA calls were converted and it was linked with hipBlas
 CUDA (V100)

matMulAB (10) : 1011.2 GFLOPS 12430.1 GFLOPS

« HIP (MI100)
matMulAB (10) : 2327.6 GFLOPS 22216.7 GFLOPS

* MI100 achieves close to the theoretical peak for single precision

www.lumi-supercomputer.eu #lumisupercomputer #lumieurohpc

LUMI

N-BODY SIMULATION

* N-Body Simulation (https://github.com/themathgeek13/N-Body-Simulations-
CUDA) AllPairs_ N2

* 171 CUDA calls converted to HIP without issues, close to 1000 lines of code
* 32768 number of small particles, 2000 time steps

CUDA execution time on V100 : 68.5 seconds

HIP execution time on MI100: 95.57 seconds, 39.5% worse performance

* Tune the number of threads per block to 256 instead of 1024, then:

HIP execution time on MI100: 54.32 seconds, 26.1% better performance than V100

www.lumi-supercomputer.eu #lumisupercomputer #lumieurohpc 18

Foriran

* First Scenario: Fortran + CUDA C/C++
oAssuming there is no CUDA code in the Fortran files.
oHipify CUDA
oCompile and link with hipcc

* Second Scenario: CUDA Fortran
oThere is no HIP equivalent
oHIP functions are callable from C, using "extern C'
oSee hipfort

www.lumi-supercomputer.eu #lumisupercomputer #lumieurohpc

LUMI

LUMI

Hipfort
* The approach to port Fortran codes on AMD GPUs 1s different, the hipify tool

does not support it.
* We need to use hipfort, a Fortran interface library for GPU kernel *

* Steps:
1) We write the kernels in a new C++ file
2) Wrap the kernel launch in a C function

3) Use Fortran 2003 C binding to call the function
4) Things could change in the future (see GPUFORT)

* Example of Fortran with HIP: o
https://github.com/cschpc/lumi/tree/main/hipfort

e Use OpenMP offload to GPUs
* https://github.com/ROCmSoftwarePlatform/hipfort

www.lumi-supercomputer.eu #lumisupercomputer #lumieurohpc

LUMI

BabelStream on MIT100 (HIP vs AOMP)

BabelStream (MI100)

1200000
1000000
SO0
| Copy
e ® Mul
= GO0000 Add
= ® Triad
A00000 W Dot
200000
O

AOMP AOMP*

Programming Model

www.lumi-supercomputer.eu #lumisupercomputer #lumieurohpc

LUMI

Megahip

* https://github.com/zjin-Icf/one API-DirectProgramming
* 115 Applications/Examples with CUDA, SYCL, OpenMP offload and HIP

. %ﬁsﬁung hipify tool, create a megahip script to convert all the CUDA examples to

e ./megahip.sh
3287 CUDA calls were converted to HIP

115 applications totally 45692 lines of code, there are warnings for 4 of them,
there are totally 24 Warmn s that something was wrong, check warnings.txt
Application Success 96.5217%

Conversion Success 99.2699%

www.lumi-supercomputer.eu #lumisupercomputer #lumieurohpc

LUMI

OpenACC

* GNU will provide OpenACC (Mentor Graphics contract, now called
Siemens EDA)

* HPE will use the provided GNU compiler for OpenACC support

* HPE is supporting for OpenACC v2.0 for Fortran. This is quite old
OpenACC version. HPE announced support for OpenACC, newer
versions for all the main programming languages (Fortran/C/C++)

* Clacc from ORNL: https://github.com/Illvm-doe-org/llvm-
project/tree/clacc/master OpenACC from LLVM only for C (Fortran and
C++ in the future)

oTranslate OpenACC to OpenMP Offloading

www.lumi-supercomputer.eu #lumisupercomputer #lumieurohpc 23

LUMI

Clacc

* It supports C programming language, Fortran is on the way, C++ not started(??) yet

$ clang -fopenacc-print=omp -fopenacc-structured-ref-count-omp=no-hold -fopenacc-
present-omp=no-present jacobi.c

* Original code (OpenACC): . . -
#pragma acc parallel loop reduction(max:Inorm) private(i,j) present(newarr, oldarr)
collapse(2)

* Ported code (OpenMP):
#]Il)ragma omp target teams map(alloc: newarr,oldarr) map(tofrom: Inorm)\
shared(newarr,oldarr) firstprivate(nx,ny,factor) reduction(max: Inorm) \
#pragma omp distribute private(i,j) collapse(2

www.lumi-supercomputer.eu #lumisupercomputer #lumieurohpc 24

SYCL Implementations in Development

SYCL implementations are available from an increasing number of vendors, including adding support for diverse acceleration APl back-ends in addition to OpenCL.

SYCL, OpenCL and SPIR-V, as open industry 2 N SYCL enables Khronos to
standards, enable flexible integration and ‘ (SYCL influence ISO C++ to (eventually) @
deployment of multiple acceleration technologies Source Code support heterogeneous compute

£ XILINX.

triSYCL hipSYCL
Open source CUDA and
test bed HIP/ROCm

¢ codeplay’

C ComputeCpp

DPC++
Uses LLVM/Clang
Part of oneAPI|

OpenCL 8 OpenCL + |§g|
SPIR(-V) SPIR/LLVM KR intel CPUs
3 GPR. AMD GPUs NEC VEs
Intel CPUs Intel CPUs XILINX FPGAs
Intel GPUs Intel GPUs POCL
Intel FPGAs Intel FPGAs Iopet-ienvoe Geerct. . Multiple Backends in Development
AMD GPUs GPUs and mare} SYCL beginning to be supported on multiple
"""'”“"m atl w low-level APIs in addition to OpenCL
IMG PowerVR e.g., ROCm and CUDA
Renesas R-Car For more information: http://sycl.tech

hipSYCL and SYCL 2020: https://github.com/hipSY CL/featuresupport

www.lumi-supercomputer.eu #lumisupercomputer #lumieurohpc 25

SAXPY SYCL

create sycl::queue q(sycl::default_selector{}),

queue
const float A(aval);
sycl::buffer<float,1>d X { h_X.data(), sycl::range<1>(h_X.size()) }; n
sycl::buffer<float,1>d Y { h_Y.data(), sycl::range<1>(h_Y .size()) };
sycl::buffer<float,1>d Z { h_Z.data(), sycl::range<1>(h_Z.size()) };

q.submit([&](sycl::handler& h) {

auto X =d_X.template get access<sycl::access::mode::read>(h);
auto Y = d_Y.template get access<sycl::access::mode::read>(h);

auto Z =d_Z.template get access<sycl::access::mode::read_write>(h);

h.parallel_for<class nstream>(sycl::range<1>{length}, [=] (sycl::id<1> 1) {_’
const int 1 =it[0];
Z[i] = A * X[i] + Y[i];
1s
1)
q.-wait();

LUMI

sycl::queue q(sycl::host selector{});
sycl::queue q(sycl::cpu_selector{});
sycl::queue q(sycl::gpu_selector{});
sycl::queue q(sycl::accelerator selector{});

Declare SYCL buffers to handle data
on the device

SYCL accesors they generate a dataflow
graph that the compiler and runtime can
use to move data across devices

SYCL 2020
q.parallel_for(sycl::range<1>{length}, [=] (sycl::id<1>1) {

d Z[i]+=A*d X[i] +d_Y[i];
I35

www.lumi-supercomputer.eu #lumisupercomputer #lumieurohpc 26

Kokkos LUMI

A C++ programming framework

Many concepts, such as view, execution pattern, execution policy, execution space, and computational body
to support various devices

It is used by a few HPC applications already with success

There is some support for Fortran codes

Kokkos::View<T*> a(*d_a);
Kokkos::View<T*> b(*d_b);

Kokkos::parallel_reduce(array_size, KOKKOS_LAMBDA (const long index, T &tmp)
{

tmp += alindex] * b[index];
}, sum);

www.lumi-supercomputer.eu #lumisupercomputer #lumieurohpc 27

Resulls of BabelStream on MI100

BabelStream (MI100)

1200000
1000000 -
600000 - :
400000 - -
S 200000 - |
0 - i !
s
gﬁg ‘LS.' & Qg A& f\‘{'ﬁ
W ?__C‘),:,'\' My
& o
2 &
ka_.; _,..C.-\"
& &

Programming Models

* Kokkos is not optimized, compare with HIP results, not HIP*

www.lumi-supercomputer.eu #lumisupercomputer #lumieurohpc

E_’
&
W

LUMI

B Copy
W Mul
Add
B Triad
m Dot

28

LUMI

Tuning

* Multiple wavefronts per compute unit (CU) 1s important to hide
latency and instruction throughput

* Tune number of threads per block, number of teams for OpenMP
offloading etc.

* Memory coalescing increases bandwidth
* Unrolling loops allow compiler to prefetch data

» Small kernels can cause latency overhead, adjust the workload
* Use of Local Data Share (LDS) memory

www.lumi-supercomputer.eu #lumisupercomputer #lumieurohpc 29

LUMI

Conclusion/Future work

* A code written in C/C++ and MPI+OpenMP is a bit easier to be ported to OpenMP
offloading compared to other approaches.

* The hipSYCL and Kokos could be a good option considering that the code is in C++.

* There can be challenges, depending on the code and what GPU functionalities are
integrated to an application

« It will be required to tune the code for high occupancy

 Track historical performance among new compilers

* GCC for OpenACC and OpenMP Offloading for AMD GPUs (issues will be solved
with GCC 12.x and LLVM 13.x)

* Tracking how profiling tools work on AMD GPUs (rocprof, TAU, HPCToolkit)

* We have trained more than 80 people on HIP porting: http://github.com/csc-
training/hip

www.lumi-supercomputer.eu #lumisupercomputer #lumieurohpc 30

LUMI

George Markomanolis Follow us

Lead HPC Scientist Twitter: @LUMIhpc

LinkedIn: LUMI supercomputer

georgios.markomanolis@csc.fi YouTube: LUMI supercomputer

www.lumi-supercomputer.eu

contact@lumi-supercomputer.eu

m

The acquisition and operation of the EuroHPC e
** supercomputer is funded jointly by the EuroHPC Joint Leverage from B A
o % Undertaking, through the European Union’s Connecting the E U Lo REGIONAL COUNCIL
S Europe Facility and the Horizon 2020 research and 2014—2020 European Union OF KAINUU
innovation programme, as well as the of Participating European Regora [E U R O

States FI, BE, CH, CZ, DK, EE, IS, NO, PL, SE.

