Supercomputer Fugaku

Performance Characteristics of A64FX Processor

Mitsuhisa Sato Team Leader of Architecture Development Team

Deputy project leader, FLAGSHIP 2020 project

Deputy Director, RIKEN Center for Computational Science (R-CCS)

Professor (Cooperative Graduate School Program), University of Tsukuba

Tetsuya Odajima and Yuetsu Kodama, ... and many project members FLAGSHIP 2020 project, R-CCS

Outline of my talk

- Co-design of A64FX processor for "Fugaku" in FLAGSHIP 2020 project
 - Design target and KPIs, and co-design
 - Overview of A64FX processor
 - A64FX was developed by Fujitsu and RIKEN, and the first processor equipped with Arm SVE.
- The Performance results of A64FX processor
 - UK benchmark and LULESH
 - Open-source HPC software
 - SPEC® benchmark
 - Summary of A64FX performance characteristics
- Performance Tuning and Power Control
- Concluding remarks

KPIs on Fugaku development in FLAGSHIP 2020 project

3 KPIs (key performance indicator) were defined as the design target for Fugaku development

- 1. Extreme Power-Efficient System
 - Maximum performance under Power consumption of 30 40MW (for system)
- 2. Effective performance of target applications
 - It is expected to exceed 100 times higher than the K computer's performance in some applications
- 3. Ease-of-use system for wide-range of users

Target Application's Performance

Performance Targets

• 100 times faster than K for some applications (tuning included)

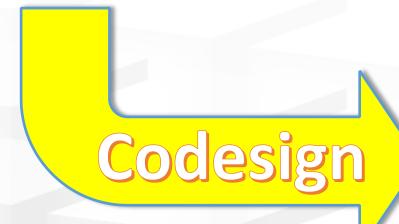
https://postk-web.r-ccs.riken.jp/perf.html

• 30 to 40 MW power consumption

■ Predicted Performance of 9 Target Applications

As of 2019/05/14

Area	Priority Issue	Performance Speedup over K	Application	Brief description
Health and	Innovative computing infrastructure for drug discovery	x125+	GENESIS	MD for proteins
longevity	Personalized and preventive medicine using big data	X8+	Genomon	Genome processing (Genome alignment)
Disaster	Integrated simulation systems induced by earthquake and tsunami	x45+	GAMERA	Earthquake simulator (FEM in unstructured & structured grid)
prevention and Environment	Meteorological and global environmental prediction using big data	x120+	NICAM+ LETKF	Weather prediction system using Big data (structured grid stencil & ensemble Kalman filter)
Energy issue	5. New technologies for energy creation, conversion / storage, and use	x40+	NTChem	Molecular electronic (structure calculation)
Energy issue	6. Accelerated development of innovative clean energy systems	x35+	Adventure	Computational Mechanics System for Large Scale Analysis and Design (unstructured grid)
Industrial competitivenes	7. Creation of new functional devices and high- performance materials	x30+	RSDFT	Ab-initio program (density functional theory)
s enhancement	8. Development of innovative design and production processes	x25+	FFB	Large Eddy Simulation (unstructured grid)
Basic science	9. Elucidation of the fundamental laws and evolution of the universe	x25+	LQCD	Lattice QCD simulation (structured grid Monte Carlo) 5


Codesign of "Fugaku"

3 Design Targets:

- 1. Extreme Power-Efficient System
 - Maximum performance under Power consumption of 30 40MW (for system)
- 2. Effective performance of target applications
 - It is expected to exceed 100 times higher than the K computer's performance in some applications
- 3. Ease-of-use system for wide-range of users

Cool (Low-power) technology is important!!

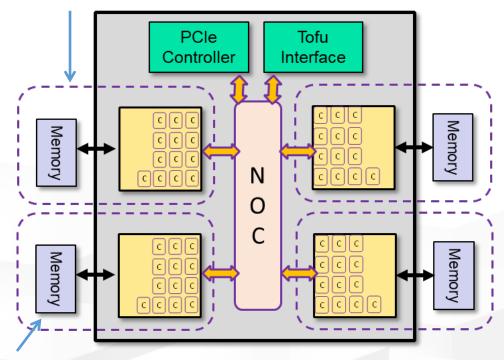
Codesign to meet these 3 design targets

Technologies and Architectural Parameters to be determined

- Basic Architecture Design (by Feasibility Studies)
 - Manycore approach, O3 cores, some parameters on chip configuration and SIMD
- Instruction Set Architecture and SIMD Instructions
 - Fujitsu collaborated with Arm, contributing to the design of the SVE as a lead partner
- Chip configuration
- Memory technology
 - DDR, HBM, HMC ···
- Cache structure
- Out of order (O3) resources
- Enhancement for Target Applications
- Interconnect between Nodes
 - SerDes, topologies "Tofu" or other network?

- ✓ The number of cores in a CMG
- ✓ The number of CMGs in a chip
- ✓ How to connect cores to shared L2 in a CMG
- ✓ The number of ways, the size, and throughp
 uts of the L1
- ✓ and L2 caches
- ✓ The topology of network-on-chip to connect CMGs
- ✓ The die size of the chip
- ✓ The number of chips in a node

Supercomputer "Fugaku" and A64FX processor



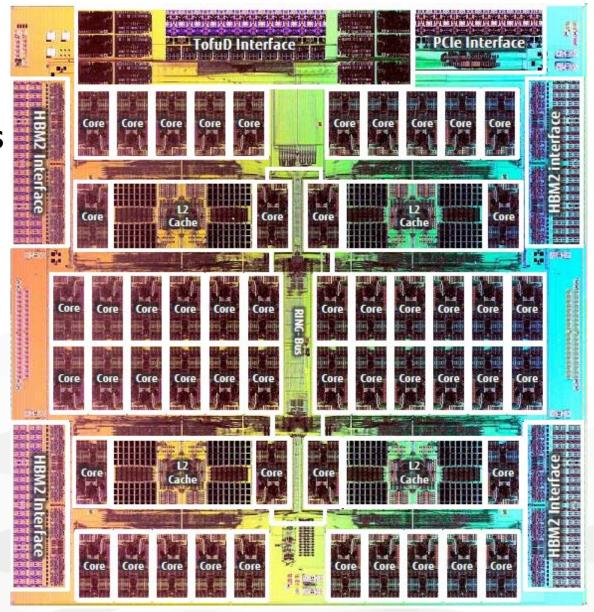
- Ultra-scale "general-purpose" manycore system: 158,976 nodes (1 processor/node, total 7.6 M cores, theoretical peek 537PFLOPS (DP))
- Arm-based manycore processor: Fujitsu A64FX (Armv8.2-A SVE 512bit SIMD, #core 48 + 2/4, 3TF@2.0GHz, boost to 2.2GHz)
 - 12 cores in a cluster of cores called CMG, connected to L2 and HBM memory chips
- Advanced Memory technology: HBM2 32 GiB, 1024 GB/s bandwidth, packaged in CPU chip
- Scalable Interconnect: ToFu-D interconnect

- Standard programing model is OpenMP-MPI hybrid programming. running each MPI process on a NUMA node (CMG).
- ◆ 48 threads OpenMP is also supported.

CMG(Core-Memory-Group): NUMA node 12+1 core

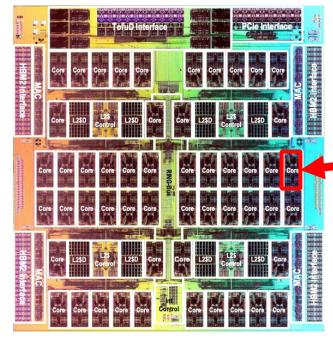
HBM2: 8GiB

Diagram of A64FX processor



Die Photograph of A64FX processor

- TSMC 7nm FinFET
- 400 mm^2
- HBM2 chips are mounted on Siinterposer connected by TSMC CoWoS technology



Comparison of Die-size

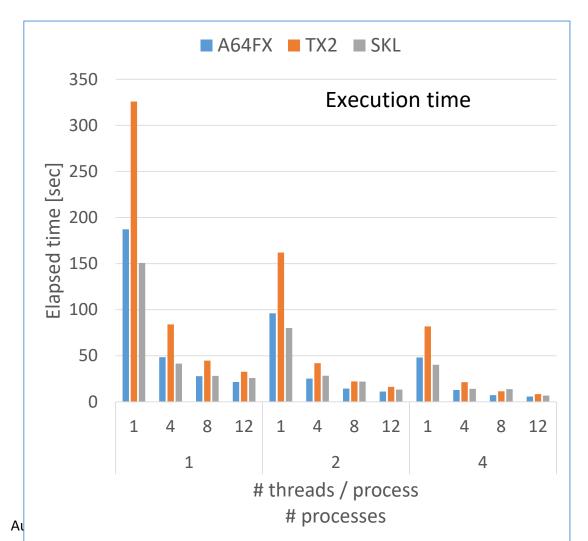
- A64FX: 52 cores (48 cores), 400 mm² die size (8.3 mm²/core), 7nm FinFET process (TSMC)
- Xeon Skylake: 20 tiles (5x4), 18 cores, ~485 mm² die size (estimated) (26.9 mm²/core),
 14 nm process (Intel)
- A64FX core is more than 3 times smaller per core.

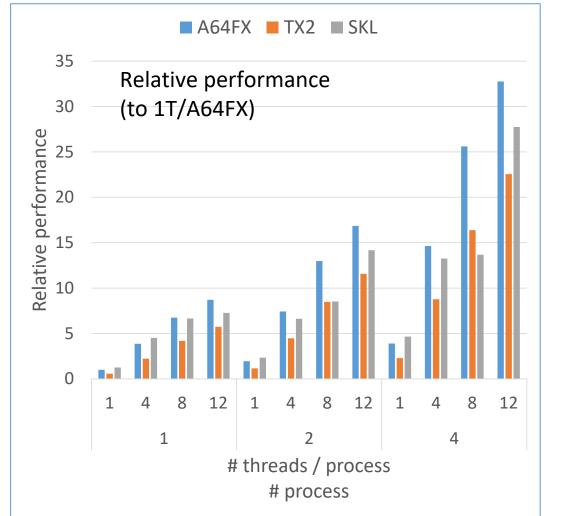
A64FX: 400 mm² (20 x 20)

Xeon Skylake, High Core Count: 4 x 5 tiles, 18 cores, 2 tiles used for memory interface 485 mm² (22 x 22)

https://www.fujitsu.com/jp/solutions/business-technology/tc/catalog/ff2019-post-k-computer-development.pdf

https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)




Benchmark result of CloverLeaf

- Good scalability by increasing the number of threads within CMG.

A hydrodynamics mini-app to solve the **R-CCS** compressible Euler equations in 2D, using Comparison with two nodes of TX2 (dual) and Skylake (dual) an explicit, second-order method

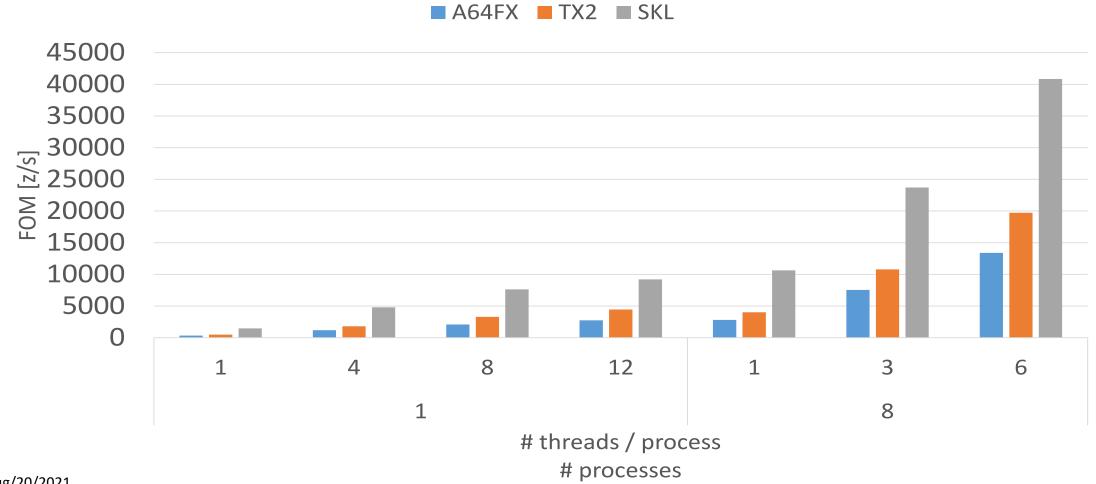
The performance of one A64FX is comparable (better) to that of two nodes (4 sockets) of Skylake

Taken form UK benchmarks:

Performance and Power-efficiency of HPC OSS

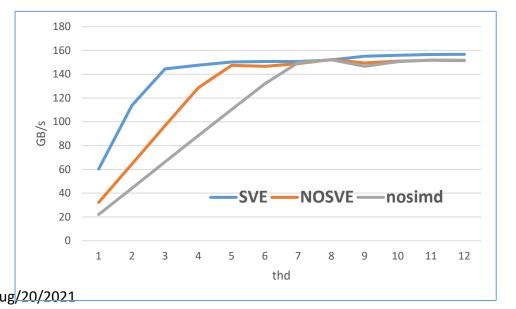
- Several Open-source software were already ported and evaluated.
- Evaluation using one chip A64FX and dual chips of Xeon.
- The almost same performance to dual sockets of Xeon with half of power consumption.

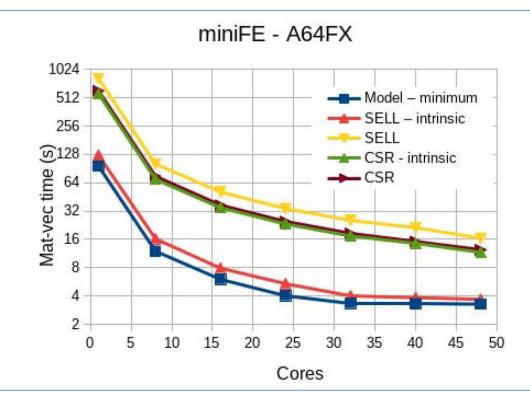
Performance and power efficiency of open-source applications (results are shown in %, relative to Intel Xeon Platinum 8268 (Cascadelake, 2.90 GHz, 24 cores/socket) (dual sockets))



LULESH

- A64FX performance is less than Thx2 and Intel one
- We found low vectorization (SIMD (SVE) instructions ratio is a few %)
- We need more code tuning for more vectorization using SIMD


How to improve the performance of sparse-matrix code



Storage format is important:

- Sliced ELLPACK format shows significantly better performance than CSR, but only when it is vectorized manually using intrinsics."
- CSR is not good even with manual vectorizing.
- Vectorizing with SVE is important to get memory bandwidth.

Memory bandwidth with hardware prefetch

B. Brank, S. Nassyr, F. Pouyan and D. Pleiter, "Porting Applications to Arm-based Processors," EAHPC Workshop, *IEEE CLUSTER* 2020, Kobe, Japan, 2020, pp. 559-566, doi: 10.1109/CLUSTER49012.2020.00079.

SPEC CPU® 2017 integer Speed

- The performance of A64fX is about ¼ performance of Xeon in single thread.
 - Fugaku uses normal mode (2.0GHz) with Fujitsu compiler tcsds-1.2.30a. For c and c++, clang mode is used.
 - Xeon is Cisco UCS B200 M5 (Platinum 8168(Skylake), 2.7GHz, 24core x 2 chip, turbo on) with icc 18.0.2.

https://www.spec.org/cpu2017/results/res2018q2/cpu2017-20180529-06367.txt

- Reference machine is UltraSPARC-IV+(2.1GHz, 2cores x 4 chip)
- The reason for the low single thread integer performance of A64FX is that
 - the SIMD rate is low in SPEC CPU/int and
 - the frequency and the O3 resource are limited for the throughput-oriented architecture of A64FX.

	Lang	Threads	A64FX	Xeon
600.perlbench_s	С	1	1.20	6.20
602.gcc_s	С	1	2.63	9.57
605.mcf_s	С	1	3.42	11.2
620.omnetpp_s	C++	1	1.26	7.31
623.xalancbmk_s	C++	1	1.61	9.46
625.x264_s	С	1	2.06	11.6
631.deepsjeng_s	C++	1	1.37	5.17
641.leela_s	C++	1	1.26	4.36
648.exchange2_s	F90	1	1.42	13.2
657.xz_s	C/OpenMP	48	8.52	23.5
SPECspeed®2017_int_base			1.98	9.07

COPTIMIZE = -Nclang -Ofast -mcpu=a64fx+sve -ffj-no-fp-relaxed -ffj-eval-concurrent -fsave-optimization-record -fopenmp -Nlst=t -Koptmsg=2 CXXOPTIMIZE = -Nclang -Ofast -mcpu=a64fx+sve -ffj-no-fp-relaxed -ffj-eval-concurrent -fsave-optimization-record -fopenmp -Nlst=t -Koptmsg=2 FOPTIMIZE = -Kfast,openmp -Nlst=t -Koptmsg=2

SPEC OMP® 2012

- The performance of A64FX using 48 thread is about 65% performance of Xeon using 56 thread (28 cores).
 - Fugaku uses normal mode (2.0GHz) with Fujitsu compiler tcsds-1.2.30a. For c and c++, clang mode is used.
 - Xeon is Cisco C240 M5 (Platinum 8280(Cascade Lake), 2.7GHz, 28core x 1chip, hyperthread on (56threads), turbo on) with icc 19.0.1.

https://www.spec.org/omp2012/results/res2019q2/omp2012-20190313-00172.txt

- Reference machine is Sun Fire X4140 (AMD Opteron 2384, 2.7GHz 4core x 2chips)
- For some programs (swim and mgrid), A64FX brings extremely good performance due to HBM2.
- For 350.md, performance improvement has been confirmed by source code tuning, and we hope that it will be applied by improving the compiler.

	Lang	Threads	A64FX	Xeon
350.md	F	48	2.63	62.6
351.bwaves	F	48	15.5	11.2
352.nab	С	48	3.00	12.9
357.bt331	F	48	5.82	16.0
358.botsalgn	С	48	5.22	10.5
359.botsspar	С	48	3.07	6.83
360.ilbdc	F	48	7.69	8.25
362.fma3d	F	48	4.28	11.3
363.swim	F	48	53.1	8.38
367.imagick	С	48	12.2	13.6
370.mgrid331	F	48	32.6	7.46
371.applu331	F	48	8.88	14.4
372.smithwa	С	48	12.8	11.8
376.Kdtree	C++	48	3.22	9.24
SPECompG_base2012			7.77	12.0

Summary of A64FX performance characteristics

- For core-to-core comparison in intspeed, integer performance is 1/4 of Xeon
- For chip-to-chip comparison in SPEC OMP, 48 threads performance of one chip is 65% to one chip of recent high-end Xeon (Cascade Lake)
 - NOTE: Performance of memory-intensive benchmarks is extremely good in A64FX thanks to HBM.
- For some scientific workload, the almost same performance to dual sockets of Xeon with half of power consumption (UK benchmark and HPC OSS)
- High SIMD rate is important to get performance
 - Need to tune memory access pattern
 - We found many benchmark programs are not well-vectorized.
- Power efficiency of A64FX is very good (double efficiency than Xeon?)

Fugaku System Software Stack

Fugaku AI (DL4Fugaku)

RIKEN: Chainer, PyTorch, TensorFlow, DNNL...

Math Libraries
Fujitsu: BLAS, LAPACK, ScaLAPACK, SSL II
RIKEN: EigenEXA, KMATH_FFT3D, Batched BLAS,,,,

Compiler and Script Languages
Fortran, C/C++, OpenMP, Java, python, ...
(Multiple Compilers supported: Fujitsu, Arm, GNU, LLVM/CLANG, PGI, ...)

Tuning and Debugging Tools Fujitsu: Profiler, Debugger, GUI

Live Data Analytics Apache Flink, Kibana,

Cloud Software Stack OpenStack, Kubernetis, NEWT...

Batch Job and Management System

Hierarchical File System

ObjectStore

S3 Compatible

~ 3000 Apps supported by Spack

Open Source Management Tool Spack

Red Hat Enterprise Linux 8 Libraries

High-level Prog. Lang. XMP	Domain Spec. Lang. FDPS	Communication Fujitsu MPI RIKEN MPI	F	ile I/O DTF	Virtualization & Container KVM, Singularity	
Process/Thread PIP			Communication File I/C ofu, LLC		for Hierarchical Storage Lustre/LLIO	
Dod Hat Enterprise Linux Kernel , entional light weight kernel (McKernel)						

Most applications may work with simple recompile from x86/RHEL environment.

LLNL Spack automates this.

Red Hat Enterprise Linux Kernel+ optional light-weight kernel (McKernel)

Aug/20/2021

System software and Programming models & languages Rus for "Fugaku"

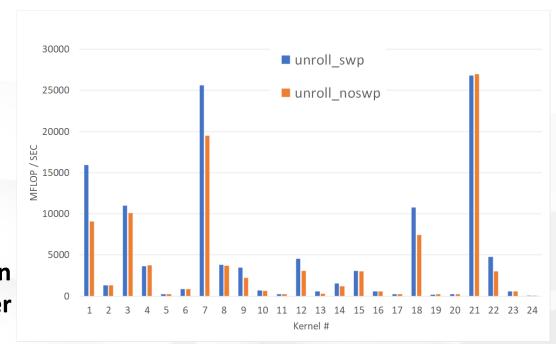
- Standard programming model is OpenMP (for NUMA node(CMG)) + MPI
 - Both OpenMPI (by Fujitsu) and MPICH (by Riken) are supported.
 - 4 compilers (Fujitsu, gcc, LLVM/Arm, Cray), OpenMP 4.x is supported.
 - uTofu low-level comm. APIs for Tofu-D interconnect.
- Container and Virtual machine (KVM, Singularity, ...)
- DL4Fugaku: AI framework for A64FX and Fugaku, used in Chainer, PyTorch, TensorFlow
- Many Open-source software are already ported using Spack
- System software and Programming tools, Math-Libs developed by RIKEN
 - McKernel: Light-weight Kernel enabling jitter-less environment for large-scale parallel program execution.
 - XcalableMP directive-based PGAS Language
 - FDPS: DLS for Framework for Developing Particle Simulators.
 - EigenExa: Eigen-value math library for large-scale parallel systems.

Performance Tuning for A64FX processor

HPC-oriented design

- Small core ⇒ Less O3 resources
- (Relatively) Long pipeline
 - 9 cycles for floating point operations
 - Core has only L1 cache
- High-throughput, but long-latency
- Pipeline often stalls for loops having complex body.

	Compiler	optimization	(Fujitsu	compiler)
--	----------	--------------	----------	-----------

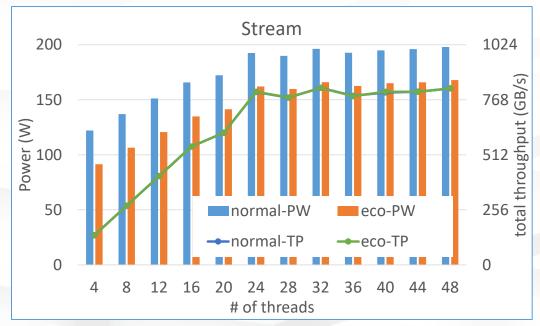

- SWP: software pipelining
 - \sim 20% speedup in Livermore Kernels
- Automatic and Manual loop fissions

Performance improvement by SWP in Livermore Kernels by Fujitsu compiler

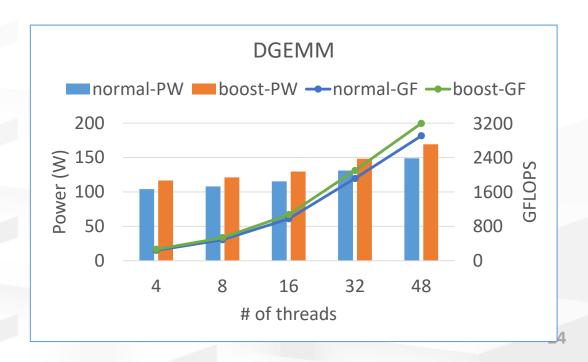
	A64FX	Skylake
ReOrder Buffer	128 entries	224 entries
Reservation Station	60 (=10x2+20x2) entries	97 entries
Physical Vector Register	128 (=32 + 96) entries	168 entries
Load Buffer	40 entries	72 entries
Store Buffer	24 entries	56 entries

A64FX: https://github.com/fujitsu/A64FX

Skylake: https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)



Evaluation power mode: Boost mode (2.2GHz) & Eco mode (1 SIMD pipeline)


Power & Performance of STREAM using Eco mode

- The performance is almost the same as that in normal mode (24 threads hits 80% of peak memory bandwidth
- The power increases upto 24 threads.
- 15%-25% reduction comparing to that in normal mode.

Power & Performance of DGEMM (in Fujitsu Lib) using Boost mode

- Reach to 95% out of peak performance
- The performance is 10% better than that in normal mode.
- The power increases by 13.7%
- The power-efficiency decreases by 3.3 %

Concluding remarks

• We have confirmed that 3 KPIs were achieved:

- Power-efficiency ⇒ Actually, Fugaku is running round at 20MW with 70% utilization
- Effective Performance of applications. ⇒ Many apps are running more efficient than expected.
- Ease-of-use ⇒ easy for porting OpenMP+MPI programs without any accelerator programming.

A64FX is a manycore processor designed for HPC workload.

- Many and small core, and less O3 resource to reduce die-size.
- For Core-to-core comparison, the integer performance is relatively low.
- For Chip-to-chip comparison, the floating point performance is comparable to Intel chip in some benchmarks.
 - Performance of memory-intensive benchmarks is extremely good in A64FX thanks to HBM.
- Very good power-efficiency (double of Intel one)

Results from Fugaku

Target applications to the K compu

Performance relative to the K computer

Power consumption

Performance of Target apps

 The target performance has been achieved

Power consumption

- Lower power consumption than we estimated
 - Almost apps use boost/no-eco
- In daily operation, system power consumption is around 20MW with 70% utilization

アプリケーション	利用形態	問題規模	ノード数/ジョブ	性能倍率	消費電力
GENESIS	多重	92,224原子	1	131 倍	22 MW
GENOMON	多重	リード長150、14億リード(ペアードエンド)	96	23 倍	20 MW
GAMERA	大規模単一	1兆自由度	147,456	63 倍	21 MW
NICAM+ LETKF	大規模単一	全球3.5kmメッシュ、1024メンバENS同化	131,072	127 倍	22 MW
NTChem	多重	720原子、19,680原子軌道	17,820	70 倍	26 MW
ADVENTURE	多重	16.5億自由度	4,096	63倍	28 MW
RSDFT	多重	110,592原子、221,184バンド	10,368	38 倍	30 MW
FFB	大規模単一	6,748億要素	158,976	51倍	29 MW
LQCD	大規模単一	192^4格子	147,456	38 倍	20 MW

