
Reflections on the Exascale Era:
Then and Now

HPC User Forum
September 6, 2023
Tucson, AZ

Douglas B. Kothe, Sandia National Laboratories
Chief Research Officer
Associate Labs Director, Advanced Science & Technology
dbkothe@sandia.gov

2

Recent Leadership Changes: ECP is in Good Hands
Charged with taking ECP across the finish line (formal Project Completion)

• ECP Director: Lori Diachin (LLNL)
• ECP Deputy Director: Ashley Barker (ORNL)
• ECP Hardware & Integration Focus Area Director: Richard Gerber (LBNL)
• Me (Doug Kothe): Immersed full time in the Exascale Computing Initiative (ECI)

since Apr 1, 2015. Agreed to take on current position at Sandia Jun 5, 2023.
Almost made it. Mixed feelings that I did not. J

• Kudos to Lori Diachin in particular for her visionary leadership, passion,
commitment, and energy. Leading ECP is not an easy gig and invariably a contact
sport. She is driving ECP across the finish line.

3

ECP Reflections: Some Observations and Lessons Learned
And there are many more . . . lots of scare tissue here that could consume a few books. J

• Open, frequent comms
(good/bad/ugly) imperative with
sponsors, stakeholders, staff

• Sponsor confidence in leadership
team a must

• Build integration into project
structure and operations

• You improve what you measure so
be careful what is measured

• Good centralized PM tools do not
guarantee success but bad ones
can sure impede progress

• Understand and manage external
dependencies

• Small diverse talented teams can
do a *lot* if left undistracted

• Projectizing R&D works if agile PM
& aggressive change control is in
place

• S/W investment must be 1st class
citizen along with H/W

• Upstream R&D investment at low
H/W tech TRL crucial

• Highly functioning diverse
leadership team are a must

• Take calculated risks with
appropriate and understood
mitigations

• Empower the leadership team then
hold them accountable

• Put overachieving, field-leading
competitive PIs together and they
”one-up” each other to death

• Formalize and document
institutional commitments

• Discoveries cannot be planned but
stable longer-lived support that
focus R&D teams on a single
challenge virtually guarantees them

• Design and quality reqms are not
known - must be iterated on

• Use external advisory and SME
bodies to inform leadership

• Avoid top down mandating of
technology solutions

• Don’t underestimate the
importance of staff training &
education and staff diversity

4

ejckccvkb

“I know you’ve taken it in the
teeth out there, but the first guy
through the wall — he always
gets bloody.”

—John Henry, Moneyball

I’d like to think that ECP
“took one for the team”

(were we Roger Dorn in Major League?)

5

HPC: Change is the only constant

Distributed Memory Era
GFLOP/s - TFLOP/s – PFLOP/s

Vector Era
MFLOP/s - GFLOP/s

• Parallelism through
vector processors.

• Codes often written at
very low level to make
optimal use of hardware.

• Parallelism through MPI.

• Using an optimal
parallel algorithm was
critical to avoid
duplication of work or
unnecessary
communication.

• Once distributed, code
could be treated serially.

10s to 100s of cores 1000s of cores 104 to 106 cores

• For the most part, an MPI
code ran anywhere. For best
performance, key kernels
could be tuned.

• As CPU frequencies stopped
increasing, parallelism
became more extreme and
specialized hardware more
common.

1980s 1990s 2000s 2010s

6

HPC: Change is the only constant
What’s next? 8-bit Zettascale before 2030? LLMs writing all our code ready to verify?

2010s 2020s

Heterogeneity is the new reality

• Computational horsepower has
significantly outpaced memory
capacity and speed.

• Separate memory spaces add
complexity, and can cause
performance issues (e.g. NUMA) or
errors if not handled correctly.

• Performance or portability?

• Refactoring an existing code is a lot of
work! You really don’t want to have to
do it again in ten years.

Heterogeneous Era
PFLOP/s - EFLOP/s

• CPUs + accelerators with separate
memory spaces to start, unclear what
else will join the fray.

• Massive fine-grained parallelism
required.

• Programming model has to match the
architecture.

• Architectural landscape is changing
rapidly, with an unclear future.

7

Frontier is the world's fastest supercomputer and the
world’s first supercomputer to break the performance
barrier known as exascale, debuting in May 2022 at
1.1 exaflops.

Compute Node
1 AMD EPYC CPU
4 AMD MI250X GPUs

System Size
>9,000 nodes

Memory
4.6 PB DDR4
4.6 PB HBM2e
36 PB on-node storage

On-node Interconnect
AMD Infinity fabric
Node-level coherence

System Interconnect
Four-port Slingshot network
100 GB/s

Frontier enables science today

8

Can Frontier Train the Largest AI Models (>1014 Parameters)?

• We are in the quest of demonstrating the HPC
needs for training real world scientific AI problems
– specifically scientific text and images.

• Pre-train large language models (LLM) such as
GPT-3, BLOOM, PALM, LaMDA, Gopher and
Vision Language models on scientific texts like
Pubmed, Aminer, MAG and materials related
publication texts

• Frontier
– We believe we train up to 150 Trillion FP32

Parameter model in Frontier. This is
approximately ~300X bigger than the largest
PaLM model with 540B parameters.

– Training some of these off the shelf large
language models could at least take 12 days
on Frontier at HPL parallel performance
efficiency

Published in Transactions on Machine Learning Research (08/2022)

1018 1020 1022 1024

0

10

20

30

40

50

A
cc

ur
ac

y
(%

)

(A) Mod. arithmetic

1018 1020 1022 1024

0

10

20

30

40

50

B
LE

U
(%

)

(B) IPA transliterate

1018 1020 1022 1024

0

10

20

30

40

50

E
xa

ct
m

at
ch

(%
)

(C) Word unscramble

LaMDA GPT-3 Gopher Chinchilla PaLM Random

1018 1020 1022 1024

0

10

20

30

40

50

E
xa

ct
m

at
ch

(%
)

(D) Persian QA

1020 1022 1024
0

10
20
30
40
50
60
70

A
cc

ur
ac

y
(%

)
(E) TruthfulQA

1020 1022 1024
0

10
20
30
40
50
60
70

Model scale (training FLOPs)

A
cc

ur
ac

y
(%

)

(F) Grounded mappings

1020 1022 1024
0

10
20
30
40
50
60
70

A
cc

ur
ac

y
(%

)

(G) Multi-task NLU

1020 1022 1024
0

10
20
30
40
50
60
70

A
cc

ur
ac

y
(%

)

(H) Word in context

Figure 2: Eight examples of emergence in the few-shot prompting setting. Each point is a separate model.
The ability to perform a task via few-shot prompting is emergent when a language model achieves random
performance until a certain scale, after which performance significantly increases to well-above random. Note
that models that used more training compute also typically have more parameters—hence, we show an
analogous figure with number of model parameters instead of training FLOPs as the x-axis in Figure 11.
A–D: BIG-Bench (2022), 2-shot. E: Lin et al. (2021) and Rae et al. (2021). F: Patel & Pavlick (2022). G:
Hendrycks et al. (2021a), Rae et al. (2021), and Ho�mann et al. (2022). H: Brown et al. (2020), Ho�mann
et al. (2022), and Chowdhery et al. (2022) on the WiC benchmark (Pilehvar & Camacho-Collados, 2019).

Word in Context. Finally, Figure 2H shows the Word in Context (WiC) benchmark (Pilehvar & Camacho-
Collados, 2019), which is a semantic understanding benchmark. Notably, GPT-3 and Chinchilla fail to
achieve one-shot performance of better than random, even when scaled to their largest model size of ≥5 · 1023

FLOPs. Although these results so far may suggest that scaling alone may not enable models to solve WiC,
above-random performance eventually emerged when PaLM was scaled to 2.5 ·1024 FLOPs (540B parameters),
which was much larger than GPT-3 and Chinchilla.

4 Augmented Prompting Strategies

Although few-shot prompting is perhaps currently the most common way of interacting with large language
models, recent work has proposed several other prompting and finetuning strategies to further augment the
abilities of language models. If a technique shows no improvement or is harmful when compared to the
baseline of not using the technique until applied to a model of a large-enough scale, we also consider the
technique an emergent ability.

4

Published in Transactions on Machine Learning Research (08/2022)

1B 10B 100B
1021

1022

1023

1024

Model parameters

Tr
ai

ni
ng

FL
O

P
s

Training compute vs.
model size

1020 1022 1024
20
15

10
7
5

Training FLOPs

W
ik

iT
ex

t1
03

pp
l

WikiText103 ppl vs.
training compute

1B 10B 100B
20
15

10
7
5

Model parameters

W
ik

iT
ex

t1
03

pp
l

WikiText103 ppl vs.
model size

1020 1022 1024
0

20
40
60
80

100

Training FLOPs

A
cc

ur
ac

y
(%

)

MMLU

1B 10B 100B
0

20
40
60
80

100

Model parameters

A
cc

ur
ac

y
(%

)

MMLU

Chinchilla Gopher Random

20 15 10 7 5
0

20
40
60
80

100

WikiText103 ppl

A
cc

ur
ac

y
(%

)

MMLU

Figure 4: Top row: the relationships between training FLOPs, model parameters, and perplexity (ppl) on
WikiText103 (Merity et al., 2016) for Chinchilla and Gopher. Bottom row: Overall performance on the
massively multi-task language understanding benchmark (MMLU; Hendrycks et al., 2021a) as a function of
training FLOPs, model parameters, and WikiText103 perplexity.

BIG-Bench (2022) found in BBQ bias benchmark (Parrish et al., 2022) that bias can increase with scaling for
ambiguous contexts. As for toxicity, Askell et al. (2021) found that while larger language models could produce
more toxic responses from the RealToxicityPrompts dataset (Gehman et al., 2020), this behavior could be
mitigated by giving models prompts with examples of being “helpful, harmless, and honest.” For extracting
training data from language models, larger models were found to be more likely to memorize training data
(Carlini et al., 2021; 2022), though deduplication methods have been proposed and can simultaneously reduce
memorization while improving performance (Kandpal et al., 2022; Lee et al., 2022a). The TruthfulQA
benchmark (Lin et al., 2021) showed that GPT-3 models were more likely to mimic human falsehoods as they
got larger, though Rae et al. (2021) later showed on a multiple-choice version that scaling Gopher to 280B
enabled emergent performance substantially better than random.

Beyond the above, emergent risks also include phenomena that might only exist in future language models
or that have not yet been characterized in current language models. Some such behaviors, as discussed
in detail in Hendrycks et al. (2021b), could be backdoor vulnerabilities, inadvertent deception, or harmful
content synthesis. Approaches involving data filtering, forecasting, governance, and automatically discovering
harmful behaviors have been proposed for discovering and mitigating emergent risks (Bender et al., 2021;
Weidinger et al., 2021; Steinhardt, 2021; Ganguli et al., 2022; Perez et al., 2022, inter alia). For a more
detailed discussion of the risks of large language models, including emergent risks, see Bender et al. (2021);
Steinhardt (2021); Bommasani et al. (2021); Ganguli et al. (2022).

5.5 Sociological changes

Finally, the emergent abilities discussed here focus on model behavior and are just one of several types of
emergence in NLP (Manning et al., 2020; Teehan et al., 2022). Another notable type of qualitative change is
sociological, in which increasing scale has shifted how the community views and uses language models. For
instance, NLP has historically focused on task-specific models (Jurafsky & Martin, 2009). Recently, scaling
has led to an explosion in research on and development of models that are “general purpose” in that they are

9

Wei, Jason, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian
Borgeaud, Dani Yogatama et al. "Emergent abilities of large language
models." arXiv preprint arXiv:2206.07682 (2022).

999

AI for Science
What Comes After Exascale

• Over 1,300 scientists participated in 4
town halls during the summer/fall of 2019

• Research opportunities in AI

– Biology, chemistry, materials,

– Climate, physics, energy, cosmology

– Mathematics and foundations

– Data life cycle

– Software infrastructure

– Hardware for AI

– Integration with scientific facilities

• Modeled after the Exascale Series in 2007

• ASCAC subcommittee report Sept. 2020

10

Argonne Leadership Computing Facility11

Aurora is building out . . .
Argonne’s upcoming exascale
supercomputer will leverage
several technological
innovations to support machine
learning and data science
workloads alongside traditional
modeling and simulation runs.

≥2 Exaflop DP
PEAK PERFORMANCE

Data Center GPU Max Series
Intel® Xe ARCHITECTURE-BASED GPU

Intel Xeon CPU Max Series
INTEL® XEON® SCALABLE PROCESSOR

HPE Cray EX
PLATFORM

Compute Node
2 Intel® Xeon® CPU Max Series processors; 6
Intel® Data Center GPU Max Series
GPUs; Unified Memory Architecture; 8
fabric endpoints; RAMBO

GPU Architecture
Intel® Data Center GPU Max Series; Tile-
based chiplets, HBM stack,
Foveros 3D integration, 7nm

CPU-GPU Interconnect
CPU-GPU: PCIe
GPU-GPU: Xe Link

System Interconnect
HPE Slingshot; Dragonfly
topology with adaptive routing

Network Switch
25.6 Tb/s per switch, from 64–200 Gbs
ports (25 GB/s per direction)

High-Performance Storage
≥230 PB, ≥25 TB/s (DAOS)

Programming Models
Intel oneAPI, MPI, OpenMP, C/C++,
Fortran, SYCL/DPC++

Node Performance
>130 TF

System Size
>10,000 nodes

12

xfg

ECP Took on a Diverse and Somewhat Risky Application Portfolio
Some of these apps were little more than “half baked prototypes” in 2016 . . .

Wind Energy Accelerators Carbon Capture Materials Quantum Astrophysics

Nuclear Energy Genomics Photon Science Subsurface Chemistry QCD Cosmology

Power Grid
Additive

Manufacturing Climate Earthquakes Combustion Fusion Catalysis

Cancer

13

But we required ECP Apps to have a specific Challenge Problem
Focuses development, allows measurable outcomes, facilitates scope / de-scope decisions

Domain* Base Challenge Problem Risks and Challenges
Wind Energy 2x2 5 MW turbine array in 3x3x1 km3 domain Linear solvers; structured / unstructured overset meshes

Nuclear Energy Small Modular Reactor with complete in-
vessel coolant loop Coupled CFD + Monte Carlo neutronics; MC on GPUs

Fossil Energy Burn fossil fuels cleanly with CLRs AMR + EB + DEM + multiphase incompressible CFD

Combustion Reactivity controlled compression ignition AMR + EB + CFD + LES/DNS + reactive chemistry

Accelerator Design TeV-class 102-3 times cheaper & smaller AMR on Maxwell’s equations + FFT linear solvers + PIC

Magnetic Fusion Coupled gyrokinetics for ITER in H-mode Coupled continuum delta-F + stochastic full-F gyrokinetics

Nuclear Physics: QCD Use correct light quark masses for first
principles light nuclei properties

Critical slowing down; strong scaling performance of MG-
preconditioned Krylov solvers

Chemistry: GAMESS Heterogeneous catalysis: MSN reactions HF + MP2 + coupled cluster (CC) + fragmentation methods

Chemistry: NWChemEx Catalytic conversion of biomass CCSD(T) + energy gradients

Extreme Materials Microstructure evolution in nuclear matls AMD via replica dynamics; OTF quantum-based potentials

Additive Manufacturing Born-qualified 3D printed metal alloys Coupled micro + meso + continuum; linear solvers

*Required to demonstrate a capability and performance metric
*Required to demonstrate a capability metric

14

But we required ECP Apps to have a specific Challenge Problem
Focuses development, allows measurable outcomes, facilitates scope / de-scope decisions

Domain* Challenge Problem Computational Hurdles
Quantum Materials Predict & control matls @ quantum level Parallel on-node perf of Markov-chain Monte Carlo; OpenMP

Astrophysics Supernovae explosions, neutron star mergers AMR + nucleosynthesis + GR + neutrino transport

Cosmology Extract “dark sector” physics from upcoming
cosmological surveys

AMR or particles (PIC & SPH); subgrid model accuracy; in-situ data
analytics

Earthquakes Regional hazard and risk assessment Seismic wave propagation coupled to structural mechanics

Geoscience Well-scale fracture propagation in wellbore
cement due to attack of CO2-saturated fluid

Coupled AMR flow + transport + reactions to Lagrangian mechanics
and fracture

Earth System Assess regional impacts of climate change on the
water cycle @ 5 SYPD

Viability of Multiscale Modeling Framework (MMF) approach for
cloud-resolving model; GPU port of radiation and ocean

Power Grid Large-scale planning under uncertainty;
underfrequency response

Parallel nonlinear optimization based on discrete algebraic
equations; multi-period optimization

Cancer Research Scalable machine learning for predictive
preclinical models and targeted therapy

Increasing accelerator utilization for model search; exploiting
reduced/mixed precision; resolving data management or
communication bottlenecks

Metagenomics Discover and characterize microbial communities
through genomic and proteomic analysis

Graph algorithms, distributed hashing, matrix operations and other
discrete algorithms

FEL Light Source Protein and molecular structure determination
using streaming light source data

Parallel structure determination for ray tracing and single-particle
imaging

*Required to demonstrate a capability and performance metric
*Required to demonstrate a capability metric

15

Four Key Ingredients of an ECP Application Development Project

Science goal Algorithmic
innovation

Porting Integration

16

Four Key Ingredients of an ECP Application Development Project

Science goal Algorithmic
innovation

Porting Integration

17

Exascale Apps: Impact Will Be Far-reaching for Decades to Come

• Predictive microstructural evolution of novel chemicals and materials for energy applications.

• Robust and selective design of catalysts an order of magnitude more efficient at temperatures hundreds of
degrees lower.

• Accelerate the widespread adoption of additive manufacturing by enabling the routine fabrication of
qualifiable metal alloy parts.

• Design next-generation quantum materials from first principles with predictive accuracy.

• Predict properties of light nuclei with less than 1% uncertainty from first principles.

• Harden wind plant design and layout against energy loss susceptibility, allowing higher penetration of wind
energy.

• Demonstrate commercial-scale transformational energy technologies that curb fossil fuel plant CO2 emission
by 2030.

• Accelerate the design and commercialization of small and micronuclear reactors.

• Provide the foundational underpinnings for a ‘whole device’ modelling capability for magnetically confined
fusion plasmas useful in the design and operation of ITER and future fusion reactors.

18

Exascale Apps: Impact Will Be Far-reaching for Decades to Come

• Address fundamental science questions such as the origin of elements in the universe, the behavior of
matter at extreme densities, the source of gravity waves; and demystify key unknowns in the dynamics of the
universe (dark matter, dark energy and inflation).

• Reduce the current major uncertainties in earthquake hazard and risk assessments to ensure the safest and
most cost-effective seismic designs.

• Reliably guide safe long-term consequential decisions about carbon storage and sequestration.

• Forecast, with confidence, water resource availability, food supply changes and severe weather
probabilities in our complex earth system environment.

• Optimize power grid planning and secure operation with very high reliability within narrow operating voltage
and frequency ranges.

• Develop treatment strategies and pre-clinical cancer drug response models and mechanisms for RAS/RAF-
driven cancers.

• Discover, through metagenomics analysis, knowledge useful for environment remediation and the
manufacture of novel chemicals and medicines.

• Dramatically cut the cost and size of advanced particle accelerators for various applications impacting our
lives, from sterilizing food of toxic waste, implanting ions in semiconductors, developing new drugs or treating
cancer.

19

Four Key Ingredients of an ECP Application Development Project

Science goal Algorithmic
innovation

Porting Integration

20

GPUs Do Best for Codes Given …

ü massive fine-grained parallelism
ü concentrated performance bottlenecks
ü weak scaling problems
ü high arithmetic intensity and/or low data movement
ü minimal branching
ü high FLOP to byte (of storage) ratio
ü use of specialized instructions

21

Algorithmic Innovation: Domain-driven Adaptations Critical for
Making Efficient Use of Exascale Systems

Inherent strong scaling challenges on GPU-based systems à
Ø Ensembles vs. time averaging
Ø Fluid dynamics, seismology, molecular dynamics, time-stepping

Increased dimensions of (fine-grained) parallelism to feed GPUs
Ø Ray tracing, Markov Chain Monte Carlo, fragmentation methods

Localized physics models to maximize "free flops”
Ø MMF, electron subcycling, enhanced subgrid models, high-order discretizations

Alternatives to sparse linear systems
Ø Higher order methods, Monte Carlo

Reduced branching
Ø Event-based models

22

Example: Modeling and Simulation of Small Modular Reactors

Reproduced with permission

• ExaSMR is a coupled multiphysics ECP
application to perform “virtual experiment”
simulations of small modular nuclear reactor
designs.

• Small modular nuclear reactors present
significant simulation challenges
— Small size invalidates existing low-order models
— Natural circulation flow requires high-fidelity fluid

flow simulation

• Two primary methods:
— Monte Carlo neutronics
— CFD with turbulence models

23

Neutron Transport: Random Particle Statistics Poorly Suited to
GPUs
• Stochastic history-based algorithm follows

particles from birth to death.

• Most particles are short-lived, a few are
not.

Everyone waits
on this particle

time

24

Branching Code Is Highly Undesirable on SIMT Architectures
(GPUs)

Even when each particle has roughly the same amount of work, thread
divergence is a big problem when random sampling sends them down different
code paths

parallel work GPU execution

Need to rethink code execution based on the target hardware. For example,
parallelizing over events (i.e. common code paths) rather than particles.

25

New Event-based Algorithm Gave ExaSMR Significant Speedup

• Parallelizing over events is a much
better match for a SIMT
architecture than parallelizing over
particles.

• Further improvements gained by
identifying parts of the system that
have significantly different
behavior and separating them out.

• Smaller, focused kernels allow for
better occupancy, i.e. more
efficient use of the hardware

4-10x f
ast

er

26

Then (2016) and Now (2023): ExaSMR
Resolved Coupled Neutronics+thermal Hydraulics Phenomena in Nuclear Reactor Cores

PI: Steve Hamilton (ORNL)

27

Then (2016) and Now (2023): Energy Exascale Earth System Model
Cloud-resolving Climate Modeling of the Earth’s Water Cycle

PI: Mark Taylor (SNL)

28

Four Key Ingredients of an ECP Application Development Project

Science goal Algorithmic
innovation

Porting Integration

29

Porting Must Be Done With Hardware in Mind

• Rewrite, profile, and optimize
– Generally preserve the exact answer

• Data Layout for memory coalescing

• Loop ordering

• Kernel flattening

• Increased locality

• Recomputing vs. storing

• Reduced branching

• Eliminating copies

• Map calculation to GPUs

• Map algorithm to GPUs

• Reduced communication

• Reduced synchronization

• Increased parallelism

• Reduced precision

• Optimized linear algebra

• Identify opportunities for
improvement

• Mathematical representation

• “On the fly” recomputing vs.
lookup tables

• Prioritization of new physical
models

• Alternate discretizations (high
AI)

• Localized subgrid models
• Sparse à dense systems

• Defining weak scaling target
• Initial condition from ROMHardware has significant impact on all

aspects of simulation strategy

30

Choosing the Right Programming Model is All About Balancing
Trade-offs

GPU-specific kernels
• Isolate the computationally-intensive parts of

the code into CUDA/HIP/SYCL kernels.
• Refactoring the code to work well with the

GPU is the majority of effort.

Loop pragma models
• Offload loops to GPU with OpenMP or

OpenACC.
• Most common portability strategy for Fortran

codes.

C++ abstractions
• Fully abstract loop execution and data

management using advanced C++ features.
• Kokkos and RAJA developed by NNSA in

response to increasing hardware diversity.

Co-design frameworks
• Design application with a specific motif to use

common software components
• Depend on co-design code (e.g. CEED,

AMReX) to implement key functions on GPU.

31

Application Motifs* (What’s the App Footprint?)
Algorithmic Methods that Capture a Common Pattern of Computation and Communication

1. Dense Linear Algebra
– Dense matrices or vectors (e.g., BLAS Level 1/2/3)

2. Sparse Linear Algebra
– Many zeros, usually stored in compressed matrices to access nonzero

values (e.g., Krylov solvers)

3. Spectral Methods
– Frequency domain, combining multiply-add with specific patterns of

data permutation with all-to-all for some stages (e.g., 3D FFT)

4. N-Body Methods (Particles)
– Interaction between many discrete points, with variations being particle-

particle or hierarchical particle methods (e.g., PIC, SPH, PME)

5. Structured Grids
– Regular grid with points on a grid conceptually updated together with

high spatial locality (e.g., FDM-based PDE solvers)

6. Unstructured Grids
– Irregular grid with data locations determined by app and connectivity to

neighboring points provided (e.g., FEM-based PDE solvers)

7. Monte Carlo
– Calculations depend upon statistical results of repeated random trials

8. Combinational Logic
– Simple operations on large amounts of data, often exploiting bit-level

parallelism (e.g., Cyclic Redundancy Codes or RSA encryption)

9. Graph Traversal
– Traversing objects and examining their characteristics, e.g., for

searches, often with indirect table lookups and little computation

10. Graphical Models
– Graphs representing random variables as nodes and dependencies as

edges (e.g., Bayesian networks, Hidden Markov Models)

11. Finite State Machines
– Interconnected set of states (e.g., for parsing); often decomposed into

multiple simultaneously active state machines that can act in parallel

12. Dynamic Programming
– Computes solutions by solving simpler overlapping subproblems, e.g.,

for optimization solutions derived from optimal subproblem results

13. Backtrack and Branch-and-Bound
– Solving search and global optimization problems for intractably large

spaces where regions of the search space with no interesting solutions
are ruled out. Use the divide and conquer principle: subdivide the
search space into smaller subregions (“branching”), and bounds are
found on solutions contained in each subregion under consideration

*The Landscape of Parallel Computing Research: A View from Berkeley, Technical Report No. UCB/EECS-2006-183 (Dec 2006).

32

ECP Co-design Centers for Key Computational Motifs
Project PI Name, Inst Short Description/Objective

CODAR Ian Foster, ANL Understand the constraints, mappings, and configuration choices between
applications, data analysis and reduction, and exascale platforms

AMReX John Bell, LBNL
Build framework to support development of block-structured adaptive
mesh refinement algorithms for solving systems of partial differential
equations on exascale architectures

CEED Tzanio Kolev, LLNL Develop next-generation discretization software and algorithms that will
enable finite element applications to run efficiently on future hardware

CoPA Susan Mniszewski,
LANL

Create co-designed numerical recipes and performance-portable libraries
for particle-based methods

ExaGraph Mahantesh
Halappanavar, PNNL

Develop methods and techniques for efficient implementation
of key combinatorial (graph) algorithms

ExaLearn Frank Alexander,
BNL

Deliver state-of-the-art machine learning and deep learning software at the
intersection of applications, learning methods, and exascale platforms

Cabana
• Flexible particle data layout
• Performance portable, multi-node particle and particle-grid motifs

CabanaMD
Molecular dynamics

proxy app

CabanaPIC
Particle-in-cell

proxy app

Kokkos
On-node performance portability

CUDA OpenMP HIP OpenMP
Target

ExaMPM
Material point

method proxy app

MPI
Multi-node computation

XGC
Plasma PIC

ArborX
Geometric search

SYCL

heFFTe
Performance portable,

multi-node FFTs

FFTW cuFFT

hypre
Preconditioners

and solvers

rocFFT

Picasso
Continuum

Mechanics PIC

Data
Services

Exascale
Platforms

Applications

CODAR

CoPA

33

CEED Provides Multiple Back-ends, Including
Through Its OCCA Portability Layer
Principal Motif: Unstructured Mesh Finite Element Discretization

✔ API between frontend apps and backend kernels

✔ Efficient operator descrip3on (not global matrix)

✔ Clients use any backend as a run-<me op<on

✔ Backend can be added as plugins without recompiling

✔ Backends compete for best performance, latency vs
 throughput, op<mize for order/device, use JIT, …

backend kernels

frontend apps

libXSMM, AVX

libCEED v0.7

✔ Extensible backends

• CPU: reference, vectorized, libXSMM
• CUDA using NVRTC cuda-gen
• OCCA (JIT): CPU, OpenMP, OpenCL, CUDA
• MAGMA

34

Then (2016) and Now (2023): CEED
Center for Efficient Exascale Discretizations

PI: Tzano Kolev (LLNL)

35

CoPA: Cabana Particle Library is Built on a Kokkos Portability Layer
Principal Motif: Particles

Cabana
• Flexible particle data layout
• Performance portable, multi-node particle and particle-grid motifs

CabanaMD
Molecular dynamics

proxy app

CabanaPIC
Particle-in-cell

proxy app

Kokkos
On-node performance portability

CUDA OpenMP HIP OpenMP
Target

ExaMPM
Material point

method proxy app

MPI
Multi-node computation

XGC
Plasma PIC

ArborX
Geometric search

SYCL

heFFTe
Performance portable,

multi-node FFTs

FFTW cuFFT

hypre
Preconditioners

and solvers

rocFFT

Picasso
Continuum

Mechanics PIC

36

Then (2016) and Now (2023): CoPA
Addressing The Challenges For Particle-based Applications To Run On Exascale Architectures

PI: Sue Mniszewski (LANL)

37

AMReX Provides Portability to ECP Applications
Through Multiple Low-level Implementations
Principal Motif: Structured Mesh, Patch-based Adaptive Mesh Refinement

AMReX

Combustion-PELE
(PeleC and PeleLM)

ExaStar
(Castro)

ExaSky
(Nyx) WarpX

MFIX-Exa ExaWind
(AMR-Wind)

MPI

CUDA HIP DPC++

OpenMP OpenACC

38

Then (2016) and Now (2023): AMReX
Adaptive Refinement of Patch-based Structured Meshes

PI: John Bell (LBNL)

39

Then (2016) and Now (2023): WarpX
Modeling of Charged Particle Beams and Accelerators, Lab & Astro Plasmas, Fusion Devices

PI: Jean-Luc Vay (LBNL)

40

WarpX’s “Then And Now” is Compelling . . . As It is for Every Team
Each ECP Team’s Articulation of This Reality Will Help With Adoption, Sustainability, Evolution

Warp (as of 2016) WarpX (as of 2022)

Runs on CPUs Runs on CPUs & 3 vendors of GPUs

~ 50% Fortran + 50% Python 100% C++ + optional Python frontend

Many advanced algorithms & physics More & better algorithms & physics

Good scaling to ~6000 CPU nodes Good scaling to ~150000 CPU nodes,
8000 GPU nodes

No dynamic load balancing Efficient load balancing

“Home-made”, brittle Mesh refinement
capability

Mesh refinement based on robust
AMReX library

Scaling of I/Os was a bottleneck Good scaling of I/Os with ADIOS/HDF5

Installation required compilation Easy installation with Spack, Conda, …

Manual tests ensured correctness ~200 physics benchmarks run
automatically on every code commit

Modeling of one plasma accelerator
stage at moderate resolution

Modeling of 10+ plasma accelerator
stages at high resolution

Figure-of-Merit over time

50
0x

Computational power increase:
• 500x: Warp (2016) è WarpX (2022)

41

Then (2016) and Now (2023): ExaWind
Predictive Physics-based Simulation Of Wind Plants

PI: Mike Sprague (NREL)

42

Programming Models Used in ECP Applications

Platform portability provided by co-design
projects (CoPA, CEED, AMReX) 33%

Native (CUDA/HIP/SYCL) or custom
implementations 33%

ST programming models (Kokkos, RAJA,
Legion) 18%

Directive-based programming models:
(OpenMP, OpenACC) 16%

• Use of co-design/ST technologies provides
significant benefit. Fine-scale architectural details
provided by co-design technologies

• Large percent of custom implementations reflects
difficulty of universal platform-portable
programming models that span diverse apps

43

QMCPACK was First Through the Wall

• QMCPACK had a working CUDA implementation
of the code that proved invaluable in understanding
where OpenMP performance was falling short.

• OpenMP offload runtimes are not yet consistently
performant across vendors. Initial OpenMP results
were significantly slower than CUDA.

• With careful performance analysis and by working
closely with the vendors, the QMCPACK team was
able to steadily improve performance of their
OpenMP version until it is now on par with CUDA.

44

Languages

0

5

10

15

20

25

30

35

Loop pragma Kokkos / RAJA Native GPU
kernels

Co-design /
libraries

12 14

25 25

GPU Programming Models

0

10

20

30

40

50

60

70

Fortran C/C++ Python

14

64

4

Distribution of ECP Programming Models Has Changed Over Time

My have programming language/model choices have evolved over course of ECP!!
• Of Note: Recent LLMs (CoPilot, etc.) appear to have adequately “learned” abstraction

layers (Kokkos / RAJA) well enough to effectively port and translate code. Does that
mean ECP was a waste? NO!!!

45

Four Key Ingredients of an ECP Application Development Project

Science goal Algorithmic
innovation

Porting Integration

46

Wind Farm
(ExaWind)

Cosmology
(ExaSky)

National Security
(MAPP)

Fusion Energy
(WDMApp)ECP Applications:

Tools

Prog Models & Runtimes

Data and Viz
Ecosystems and Delivery

Math Libraries Legend

Selected ECP Software Technologies

… and moreSubsurface
Flow

Ecosystem: E4S at large

Spack

… and more

F N W

Programming Models
and Runtimes

MPI

Umpire

RAJA

CHAI

Kokkos

… and more

C F N WSC F N WS

F W

N S

N S

N S

Tools and
Technology

PAPI

Flux

Caliper

TAU

HPCToolkit

Compilers
and Support

LLVM

OpenMP

… and more

C F N WS

C F N W

C F N S

N S

C F S

F W

N

Math Libraries (xSDK)

ArborX

SUNDIALS

PETSc/TAO

SuperLU

MFEM

Trilinos

hypre

FFT

BLAS, LAPACK

STRUMPACK

… and more

N WS

F N S

F

WSF

WSF

N S

C W

C W

F W

N

zfp

ALPINE

Cinema

VTK-m

SZ

SPOT

Visualization Analysis
and Reduction

… and more

C N WS

C N

C F N WS

C

F N

N

Data Mgmt, I/O,
Checkpoint Restart

PnetCDF

ADIOS

UnifyFS

VeloC

HDF5

SCR

MPI-IO

… and more
C

N

F

C F N WS

W

F W

N

C F N S W

Integration: ECP Applications Rely Heavily on High Quality Software
Tools and Libraries

24 apps,
6 co-design
centers

Shown are 36 ST products (used or being
considered by the 5 apps above)

ST overall has 70 unique software products
used by 24 apps and 6 co-design centers

ECP apps rely on multiple software technologies; some software products contribute to multiple distinctly developed
components of a multiphysics app (such as fusion energy modeling) that must run within a single executable.

See E4S.io
for more
ST products

AID
AML
BEE
Darshan
DTK
Dyninst
FleCSI
ForTriliinios
GASNet
Ginkgo
Kokkoskernels
Legion
libEnsemble
MarFS
NRM
OpenACC
Papyrus
PaRSEC
PDT
PowerStack
ScaLAPACK
SCR
SICM
SLATE
SWIG
Tasmanian
Umap
UPC++

47

ST’s Extreme-Scale Scientific Software Stack
(E4S) is a Key ECP Product to Sustain and Evolve

• E4S: HPC software ecosystem – a curated software portfolio
• A Spack-based distribution of software tested for interoperability

and portability to multiple architectures
• Available from source, containers, cloud, binary caches
• Leverages and enhances SDK interoperability thrust
• Not a commercial product – an open resource for all
• Growing functionality: August 2023: E4S 23.08 – 115 full release products

https://e4s.io
E4S lead: Sameer Shende (U Oregon)

Also includes other products, e.g.,
AI: PyTorch, TensorFlow, Horovod
Co-Design: AMReX, Cabana, MFEM

https://spack.io
Spack lead: Todd Gamblin (LLNL)

Community Policies
Commitment to SW quality

DocPortal
Single portal to all
E4S product info

Portfolio testing
Especially leadership

platforms

Curated collection
The end of dependency hell

Quarterly releases
Release 22.2 – February

Build caches
10X build time
improvement

Turnkey stack
A new user experience https://e4s.io Post-ECP Strategy

LSSw, ASCR Task Force

https://e4s.io/
https://spack.io/
https://e4s.io/

48

APPLICATION UPDATE

49

KPP-1 Definition

• KPP-1 is calculated as the ratio of the FOM on the exascale challenge problem to the baseline

• The FOM ratio is measured throughout the project to track progress.

• KPP-1 success is determined by an external SME review at end of project.

50% of KPP-1 applications have a Figure of
Merit improvement ≥50

• KPP-1 is based on a Figure of Merit (FOM) defined
individually for each project to capture the relevant
scientific work rate for an application.

• Goal of KPP-1 is to measure the overall impact of
ECP project, including both hardware-driven and
algorithmic improvement.

• Each application measured a baseline FOM value
at the inception of ECP.

KPP -1 =
FOMexascale

FOMbaseline

KPP-1 Threshold

100% of KPP-1 applications have a Figure of
Merit improvement ≥50

KPP-1 Objective

50

KPP-2 Definition

• KPP-2 success is determined by an external SME review at end of project. KPP-2 projects must
– Demonstrate all new capability in place to meet challenge problem specification and utilize full exascale

machine
– Demonstrate reasonably efficient port to exascale machine (uses all accelerator nodes, etc.)
– Execute demonstration calculation on target exascale platform.

• KPP-2 is based on developing new mission-critical
capabilities at exascale. Unlike KPP-1 applications,
a well-defined baseline was not available at the
inception of ECP.

• To meet KPP-2 an application must successfully
execute a capability demonstration of the challenge
problem on an exascale platform.

• All KPP-2 challenge problems were externally
reviewed and determined to require exascale-level
compute resources to execute.

50% of KPP-2 applications can execute their
exascale challenge problem

KPP-2 Threshold

100% of KPP-2 applications can execute
their exascale challenge problem

KPP-2 Objective

51

KPP in progress

Status of KPP-1 Applications on Frontier
KPP completed KPP submitted KPP signed (SME) KPP signed (FPD)

NWChemEx

LatticeQCD

QMCPACK

EXAALT

ExaSMR

WDMApp

WarpX

ExaSky

EQSIM

E3SM-MMF

CANDLE

Threshold: 6/11

52

KPP signed (FPD)

Status of KPP-2 Applications on Frontier
KPP in progress KPP completed KPP submitted KPP signed (SME)

ExaWind

GAMESS

ExaStar

ExaAM

Combustion-PELE

MFIX-Exa

ExaBiome

Subsurface

ExaSGD

ExaFEL

Threshold: 5/10

53

ECP Positioned Applications for Long-term Technical Viability

Several factors contributed to this:

• Exascale challenge problem targets: by setting ambitious performance and capability targets using real
science calculations, teams were always thinking in terms of realistic use cases rather than toy problems or
benchmarks.

• Access to Software Technology: building upon modular, well-designed software components significantly
simplifies the maintenance burden going forward.

• Access to Hardware Integration: close coordination with the vendors and Facilities ensured that teams
gained an in-depth understanding of how their codes perform in practice and helped with the adoption of
portable programming models.

• Access to Exascale machines: by getting substantial resources on the most advanced supercomputers in
the world, teams are uniquely ready to take advantage of future resources.

By the end of the project, most ECP application codes will be significantly more robust, portable and maintainable
than they would have without ECP.

54

ECP: The whole was indeed greater than the sum of the parts

Jordan Spieth, The Open Championship (Royal Birkdale, Jul 23 2017)

55

Questions?
https://www.exascaleproject.org/contact-us/

For more info
• Alexander F. et al. Exascale Applications: Skin in the Game, Phil. Trans. R. Soc. A

378: 20190056 (2020) (http://dx.doi.org/10.1098/rsta.2019.0056).
• Douglas Kothe, Stephen Lee, and Irene Qualters, Exascale Computing in the United

States, Computing in Science and Engineering 21(1), 17-29 (2019).

http://dx.doi.org/10.1098/rsta.2019.0056

