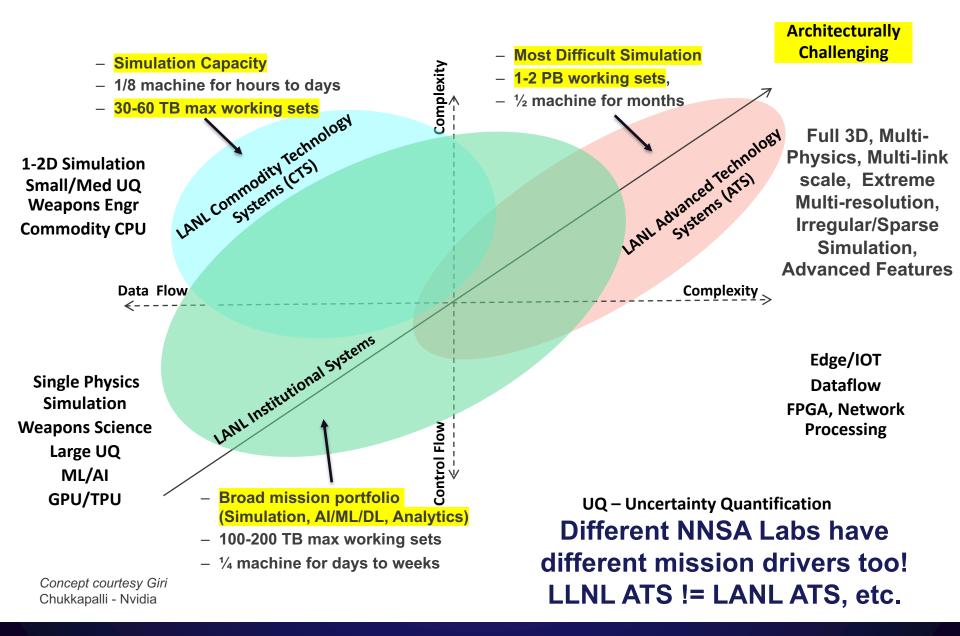
LANL Platform Planning and Update

HPC User Forum 2023

Gary Grider LANL

Input from Jim Lujan, Jason Pruet, Steve Poole, and Galen Shipman

08/2023


LA-UR-23-29918

EST.1943 —

Different Missions/Different Architectures

LANL HPC Systems

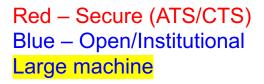
Current/Older Systems

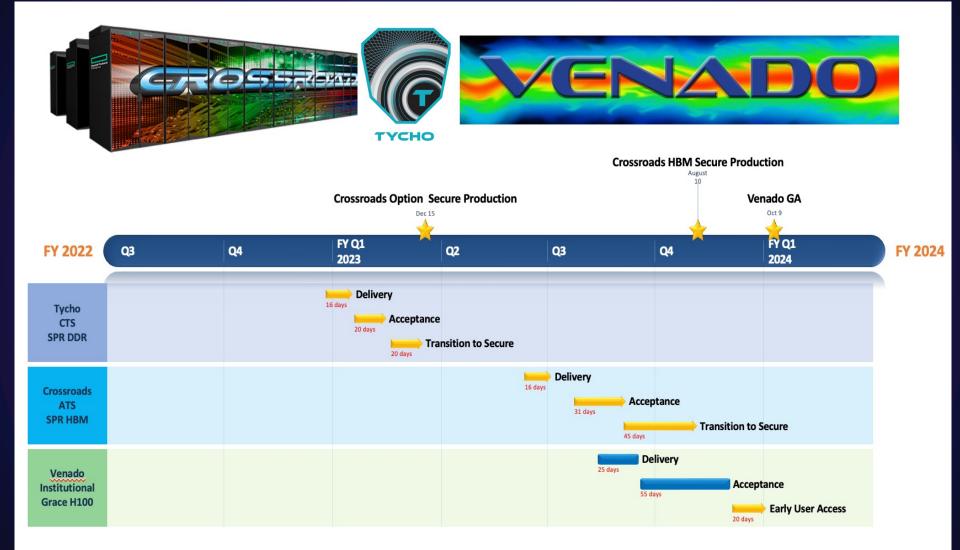
CTS - Fire: Penguin/Intel 1104 Broadwell nodes CTS - Ice: Penguin/Intel 1104 Broadwell nodes CTS - Cyclone: Penguin/Intel 1118 Broadwell nodes Viewmaster3: HPE, Visualization

ATS - Trinity – HPE/Intel ~20,000 Intel Haswell/KNL nodes 2PB mem 4 PB flash (20000 sockets)
Moon: Appro/Intel 1600 Ivybridge nodes (systems testbed)
Badger: Penguin/Intel 660 Broadwell nodes
Kodiak: Penguin/AMD 128 Rome + 4 A100 GPU nodes
Snow: Penguin/Intel 368 Broadwell nodes
Trinitite: HPE/Intel 100 Haswell 100 KNL nodes
Darwin: test bed for apps on architectures

Institutional - Chicoma: 1792 AMD Rome +(188 Milan+ 4 Nvidia A100) node (3772 sockets+ GPUs)_

ATS - Crossroads HPE/Intel ~6144 Intel SPR HBM nodes (12288 sockets)


CTS - Tycho HPE/Intel ~ 2684 Intel SPR DDR nodes (5368 sockets)


Institutional - Venado HPE/Nvidia XXXX Grace-Grace YYYY Grace+H100 nodes Rocinante HPE/Intel 380 SPR-DDR (760 sockets) 128 SPR-HBM nodes (256 sockets)

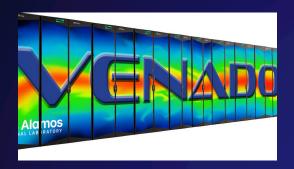
Existing Institutional Computing Resources

Quantum Computing

IBM Q

Quantum Cloud Services Dwave moved to cloud Several others Credit: Yuichiro Chino Getty Images

Extending reach to a broader base of both non-gate-based and gatebased quantum compute vendors


1792 Dual Socket Nodes Rome 64c 2.6GHz 512 GiB/Node

188 nodes 1x CPU, 4x GPU, Milan 64c 2.0GHz/A100 96 40GB Blades (256 GiB/Node) 22 80GB Blades (512 GiB/Node)

Chicoma

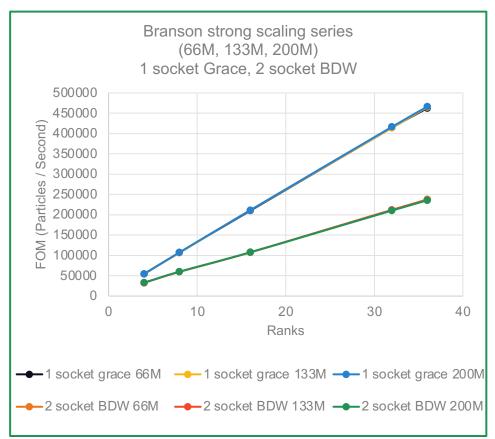
- Mostly large memory CPU only
- Some amount of A100 resource including some large memory A100
- Complimentary to Venado (new institutional machine)

Enable a wide range of open science projects, workloads and applications, from early discovery investigations to large-scale experimentation with customer-provided data sets

An Institutional Heterogeneous System

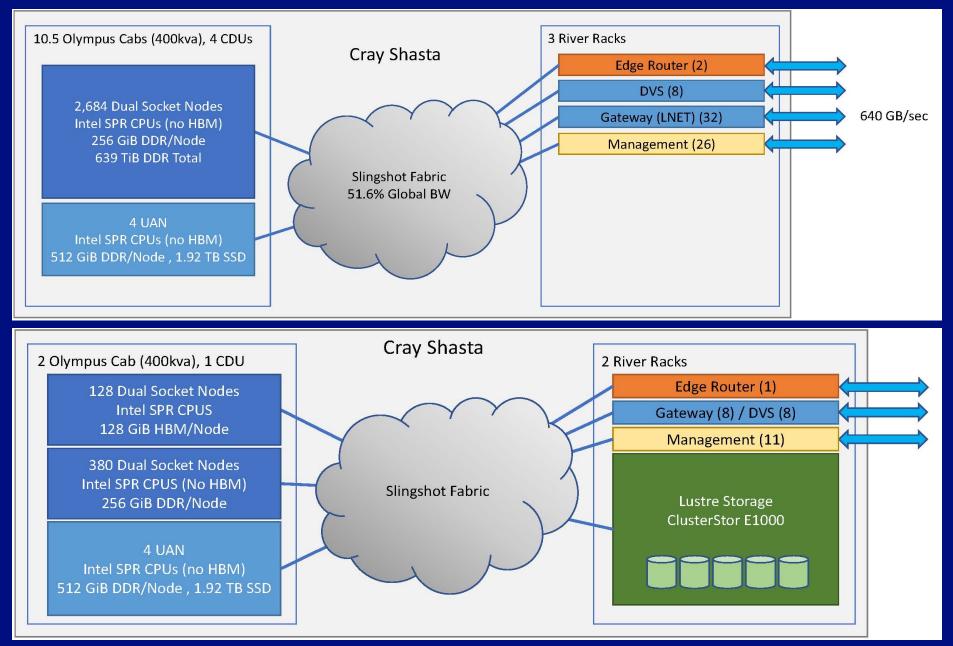
- <u>CPU-GPU node type</u>: NVIDIA Hopper (H100) GPU + NVIDIA Grace CPU connected with NVLink-C2C to provide a fast coherent, shared memory address space.
- <u>CPU-only node type</u>: <u>NVIDIA Grace CPU Superchip</u> 2 Armbased CPUs, connected coherently through the highbandwidth, low-latency, low-power NVIDIA NVLink-C2C interconnect, with up to 144 high-performance Arm Neoverse cores with scalable vector extensions and a 1 terabyte-per-second memory subsystem.

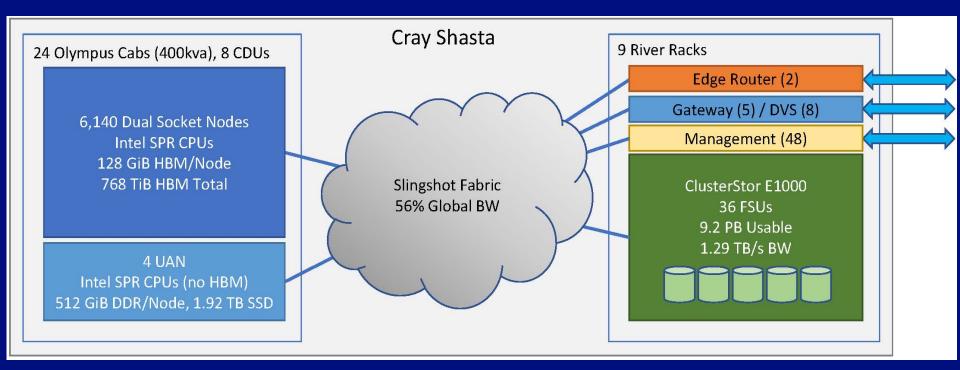
- ~80% cpu+gpu
- ~20% cpu only
- Full retical CPU+GPU with high bandwidth coherent address space
- Latest GPU
- First real HPC class Arm CPU in the US
- CPU-CPU may enable strong scaling studies
- Complementary to Chicoma (which is mostly cpu)


The first large system in the U.S. to be powered by NVIDIA Grace CPU technology

Early Grace Measurements on Branson

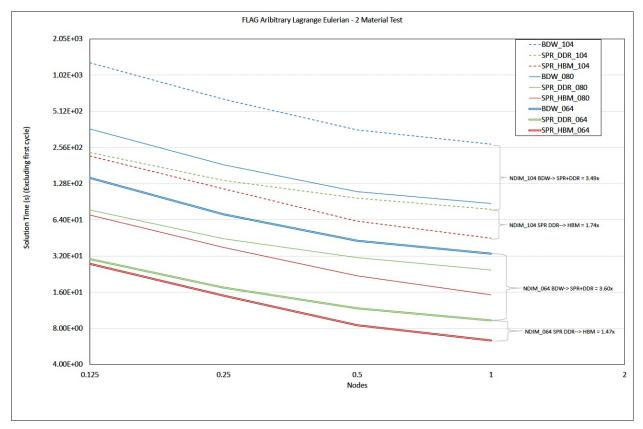
Branson is a proxy application for parallel Monte Carlo transport. It contains a particle passing method for domain decomposition.


- 1.Intel Broadwell dual socket: Intel oneAPI-2023.1.0
- 2.Nvidia Grace single socket: GCC 12.3.1 (3.8x).
- 3.Nvidia Grace strong scales well
- 4.Both processors are not sensitive to these problem sizes



FOM: Particles / Second

Programmatic Computing CTS Commodity Tech System Tycho Secure SPR DDR / Rocinante open SPR DDR and HBM

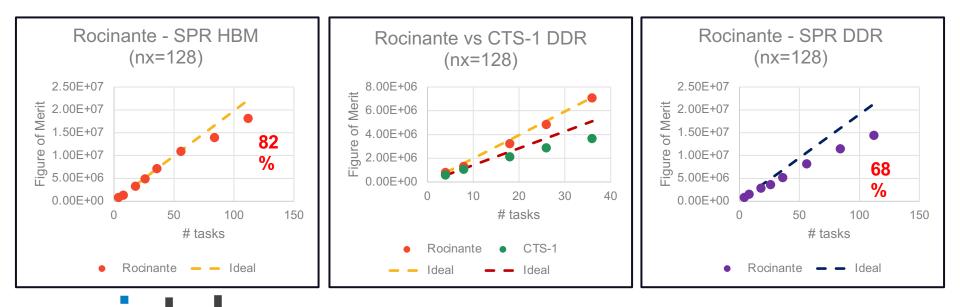


Programmatic Computing ATS Advanced Tech System Crossroads Secure SPR HBM

- ATS follow on to Trinity
- All Flash File System
- HBM only

SPR DDR/HBM Initial Performance Experience

From FugakuNEXT talk

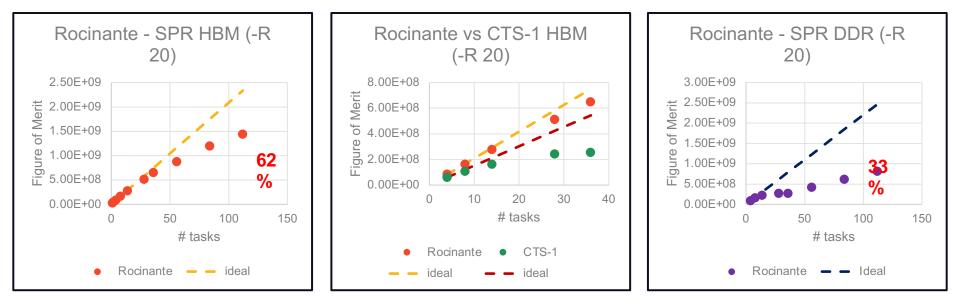

- Mix of cpu, vector, and matrix
- Memory BW
- Reasonable way to program
- Everything is memory performance bound except training

Parthenon: <u>6X</u> on SPR+HBM -- <u>4.2X</u> on SPR DDR5 (<u>43%</u> improvement on HBM over DDR5) UMT: <u>5.9X</u> on SPR+HBM -- <u>3.2X</u> on SPR DDR5 (<u>84%</u> improvement on HBM over DDR5) SPARTA: <u>9X</u> on SPR+HBM -- <u>4.1X</u> on SPR DDR5 (<u>120%</u> improvement on HBM over DDR5) AMG2023: <u>7.6X</u> on SPR+HBM -- <u>4.2X</u> on SPR DDR5 (<u>105%</u> improvement on HBM over DDR5)

Parthenon-VIBE

The Parthenon-VIBE benchmark solves the Vector Inviscid Burgers' Equation on a block-AMR mesh. Block size of 16³ balances memory footprint and computational efficiency.

- 1. SPR HBM: Intel oneAPI-2023.1.0 (6X), Intel classic-2021.9.0 (4.4X), gnu-12.2.0 (4.3X), cce-15.0.1 (5X).
- 2. SPR DDR: Intel oneAPI-2023.1.0 (4.2X), Intel classic-2021.9.0 (3.6X), gnu-12.2.0 (3.8X), cce-15.0.1 (4X).
- 3. Scales best on SPR HBM using Intel oneAPI compiler (shown below) (82%).


FOM: Cell zone-cycles / wallsecond which is the number of AMR zones processed per second.

UMT

intel

UMT (Unstructured Mesh Transport) is **an LLNL** proxy application that solves a thermal radiative transport equation using discrete ordinates (Sn).

- 1. SPR HBM: Intel classic-2021.9.0 (5.9X), Intel oneAPI-2023.1.0 (5.8X).
- 2. SPR DDR: Intel classic-2021.9.0 (3.2X), Intel oneAPI-2023.1.0 (3.2X).
- 3. Scales best on SPR HBM using Intel classic compiler (shown below) (62%).

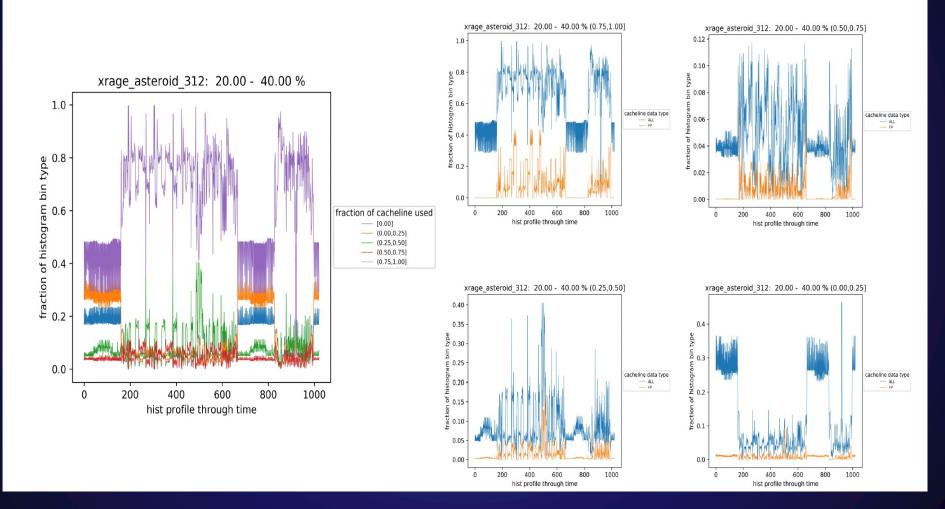
FOM: Number of unknows (cells, corners, directions, energy bins) solved per second.

https://github.com/lanl/benchmarks https://lanl.github.io/benchmarks

Benchmark Overview

Benchmark	Description	Language	Parallelism	
Branson	Implicit Monte Carlo transport	C++	MPI + Cuda/HIP	
AMG2023	AMG solver of sparse matrices using Hypre	С	MPI+CUDA/HIP/SYCL OpenMP on CPU	
MiniEM	Electro-Magnetics solver	C++	MPI+Kokkos	
MLMD	ML Training of interatomic potential model using HIPYNN on VASP Simulation data. ML inference using LAMMPS, Kokkos, and HIPYNN trained interatomic potential model	Python C++ C	MPI+Cuda/HIP	
Parthenon-VIBE	Block structured AMR proxy using the Parthenon framework	C++	MPI+Kokkos	
Sparta	Direct Simulation Monte Carlo	C++	MPI+Kokkos	
UMT	Deterministic (Sn) transport	Fortran	MPI+OpenMP and OpenMP Offload	

3D multi-physics AMR Problem Background


The focus of the LANL ATS platform march

- Significant (60%) time is spent in memory and integer operations due to unstructured mesh operations
- Control flow complexity accounts for 25% of operations
- Transport accounts for the majority of floating point intensity (up to 30% but as little as 5%)
- Heat map illustrates a common bottleneck across applications – the memory system

		Memory subsystem					Floating Point		
	L1	L2	L3	DRAM	DRAM BW	Mem Lat	DP FLOPs	Vec	Non-FP
Flag 3D Ale							2.50%	7.10%	97.50%
PartiSN 42 groups							26.20%	90.40%	73.80%
Jayenne DDMC Hohlraum							14.30%	0.20%	85.70%
xRAGE Shaped Charge							6.50%	14.00%	93.50%
Application 1							7.80%	19.20%	92.20%
Application 2							8.10%	17.60%	91.90%

It's all about memory access, NOT ABOUT FLOPS						
High branching and horrible memory access favored CPU in Crossroads Bids						

Instruction	Count	Percentage		
Load	6,775,030,849	18%		
Branching	6,063,697,707	16%		
Integer Add	5,334,155,682	14%		
Array Indexing	4,855,537,532	13%		
Conditional	3,299,248,274	9%		
Store	2,599,966,427	7%		
Type cast	1,959,938,043	5%		
Sign extension	1,541,094,404	4%		
Stack frame allocation	1,221,694,311	3%		
FP multiplication	1,171,615,897	3%		
FP comparison	1,141,415,386	3%		
INT multiplication	991,524,374	3%		

- HPC systems are becoming less balanced
- Amdahl's law makes the massively parallel core path difficult
 - Branching exacerbates this

Node compute power (Flop/s)
Interconnect Node bandwidth (Gbit/s)
Interconnect Byte-per-flop
Memory Byte-per-flop
Memory BW Byte-per-flop
Memory BW Byte-per-flop
Keren Bergman - Columbia University
Vith extensions by LANL

Systems

10

Top

2010

0.000

2011

2012

2013

2014

Relative to 2010

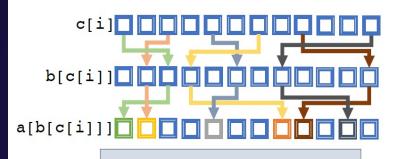
Solution of the set of

memory * bound

FLOP/Byte (Arithmetic intensity)

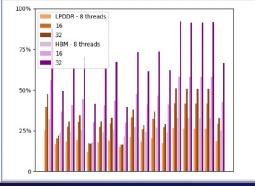
2015

2016

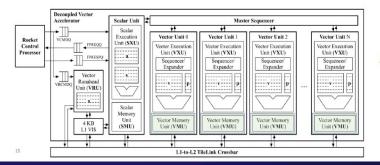

2017

2018

2020


- Less than 1% of the flops are useful
 - Memory capacity/bandwidth, and branching efficiency are **much** more important
 - HPCG is an upper limit on arithmetic intensity in many codes

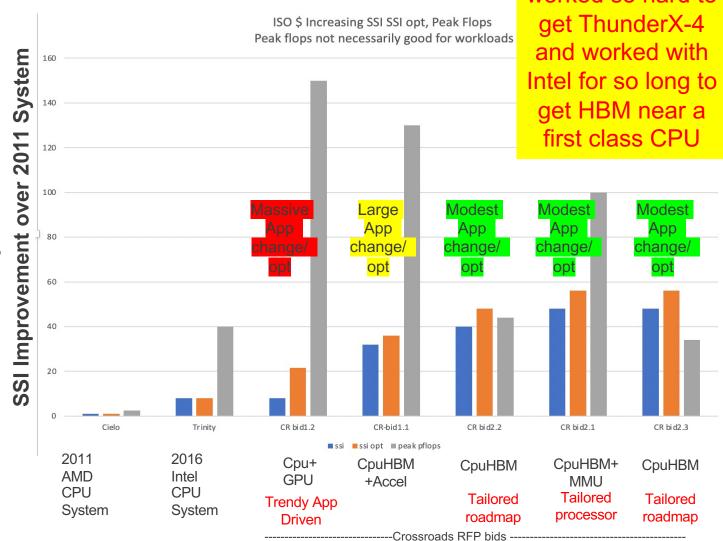
Ultimately, we want to move only the data we need for computation


Hardware simulation of representative workloads shows HBM2e (ATS-3) will significantly help our workloads

• Brute force: still moving all the arrays for indirection across the bus

Instead of a hammer (bandwidth) we would like to explore adding more intelligence in the memory controller to support complex S/G

register Caddr)

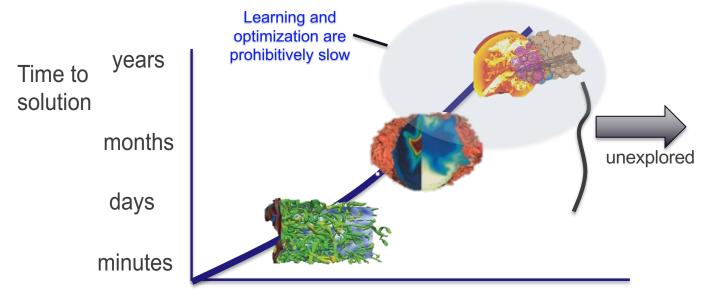


*Hwacha (UC-Berkeley)

Buying Crossroads for complex apps/workflows was much harder than buying for Peak Ops or HPL

- SSI apps are provided along with workflows
- Vendors can change apps but must honor the problem
- Measure SSI, SSI-Opt and changes/ implications on real code base.

Blue No App Change Orange App Change/Optimization Gray Peak Flops

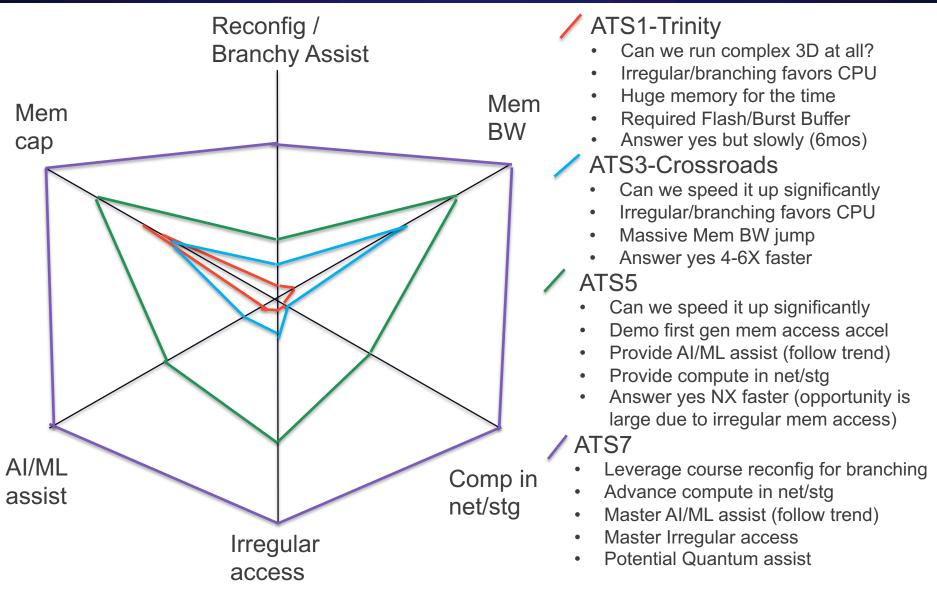


Was it worth getting higher BW on CPU's? What is next?

- Given sparse, irregular, branchy and STRONG SCALED
- Given crossroads bids/ process allowing vendors to optimize
- On production code, >4X on SPR-DDR from Broadwell, believe >6X with SPR-HBM
 - -it follows with BW due to sparse/indirection
 - -Why not more with HBM (see Bandwidth Limits in the Intel Xeon Max (Sapphire Rapids with HBM Processors, ISC 2023 IXPUG Workshop, John McCalpin, TACC Intel first gen HBM integration)
- How often 6X-9X between generations with little to no code change?
- Codes are changing for dense structures/weak scaling portions, but sparse/indirection and branchy behavior dominates

 –if we changed the dominant parts of the code – change it to what?
- We are buying *PU's to access high bandwidth memory tech, until we can engineer a more elegant solution for sparsity etc.
- Need deeper codesigned hdwr especially for broader sparsity

Impossible to possible to routine!

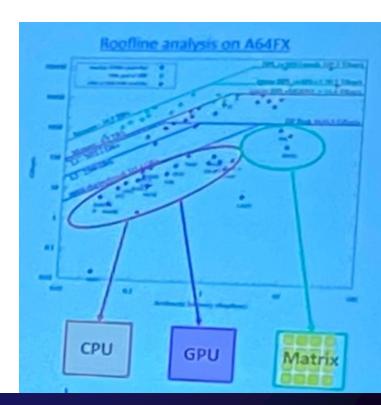


Complexity of problem

Runs that currently take 1 PB DRAM and 10k nodes / ½ million cores for 6-12 months need to run in 6-12 days Need to move from 1% efficient to 30% efficient in 5-7 years Leaning in on Tailoring of Architectures Activities to gain efficiency • ATS1/Trinity 2PB Dram/Burst Buffer, big enough to run slowly

- ATS3/Crossroads Memory BW, months to weeks
- ATS5-> Irregular access acceleration, weeks to days

LANL ATS Saga (Notional)



There is a reason LANL's ATS systems aren't all flops, something we knew more than a decade ago!

- To quote those who quote Jack https://www.nextplatform.com/2022/12/13/comp ute-is-easy-memory-is-harder-and-harder/
 - If an exascale machine costs \$500 million, but you can use 5 percent of the flops to do real work, it's like paying \$10 billion for what is effectively a 100 petaflops machine running at 100 percent utilization...We have to get these HPC and AI architectures back in whack.
 - A BW divergence of 100X or 200X is a performance and economic crime.
- Recent RIKEN Talk
 - Transformer based training is matrix bound with small floats
 - Inference is memory bound (GEMV)
 - Almost all Science apps are memory bound
 - FugakuNEXT Plans Breakthrough Bandwidth Monster (need >> 10 TB/s connected to CPU/GPU/Matrix in proper proportion

RIKEN Study: If matrix was free in workloads across ALCF, K, and Fugaku – it would gain 7-33% usable capability

To Zeta or not to Zeta

Thanks for your time!

Ultra-Scale Systems Research Center

The Efficient Mission Centric Computing Consortium