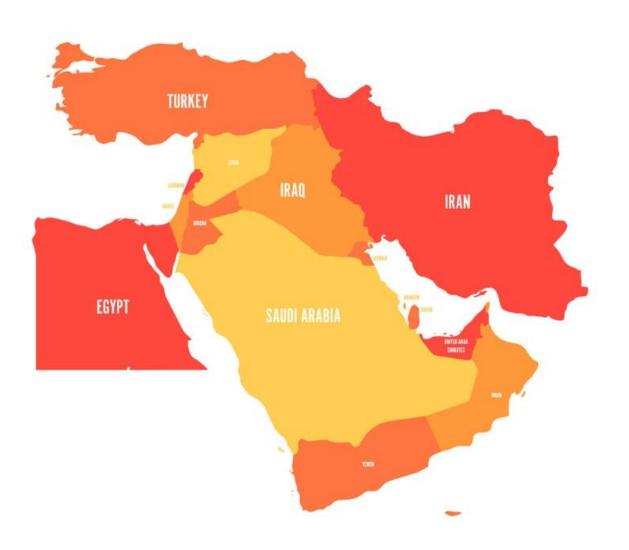
HPC User Forum@Tucson

HPC / AI Activities at KAUST & the Middle East


Jysoo Lee

Facilities Director, Research Computing Core Labs King Abdullah University of Science and Technology

2023. 9. 7

Major HPC/AI Players in the Middle East

Saudi Arabia

- KAUST
- Saudi Aramco
- KFUPM, KAU
- KACST
- NEOM

United Arab Emirates

- G42
- NYU AD, MBZUAI
- ADIA Lab

Saudi Arabia

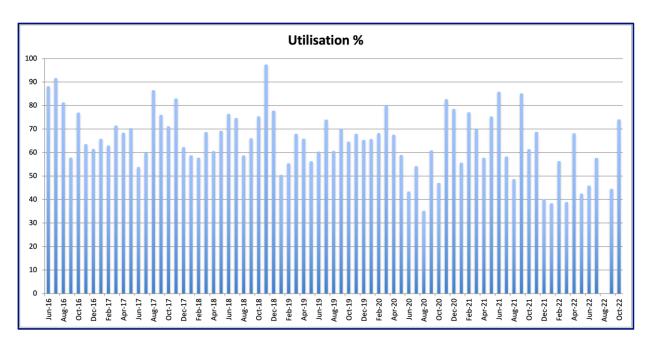
KAUST Shaheen II Supercomputer

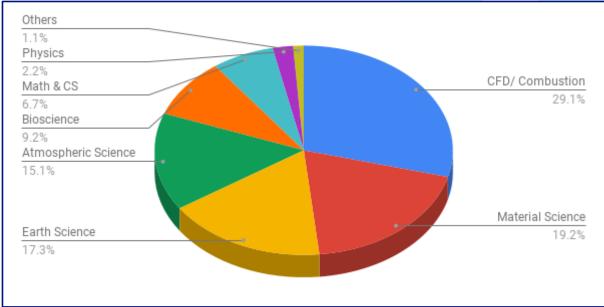
Compute	Node	Processor type: Intel Haswell	2 CPU sockets per node @2.3GHz 16 processor cores per CPU
		6174 nodes	197,568 cores
		128 GB of memory per node	Over 790 TB total memory
	Power	Up to 3.5MW	Water cooled
	Weight/Size	More than 100 metrics tons	36 XC40 Compute cabinets, disk, blowers, management nodes
	Speed	7.2 Peta FLOPS peak performance	5.53 Peta FLOPS sustained LINPACK and ranked 113 th in the latest Top500 list
	Network	Cray Aries interconnect with Dragonfly topology	57% of the maximum global bandwidth between the 18 groups of two cabinets
Storage	Storage	Sonexion 2000 Lustre appliance	17.6 Peta Bytes of usable storage Over 500 GB/s bandwidth
	Burst Buffer	DataWarp	Intel Solid Sate Devices (SDD) fast data cache Over 1.5 TB/s bandwidth
	Archive	Tiered Adaptive Storage (TAS)	Hierarchical storage with 200 TB disk cache and 20 PB of tape storage, using a spectra logic tape library (Upgradable to 100 PB)

Used by 115 KAUST faculty

Shaheen III Requirements

- Accommodate multiple workloads
 - HPC (Shaheen II)
 - AI (Ibex)
 - Hybrid
- Proposed solution
 - Single unified system
 - Modular architecture: CPU + GPU partition
 - Support multiple usage patterns
- Performance Requirements
 - CPU & GPU partition (real application performance)
 - Project & scratch storage
 - High-speed interconnect


Shaheen III Specifications


- HPE Cray EX System
- CPU Partition
 - 4608 nodes (2 x 96 Cores AMD Genoa)
- GPU Partition
 - 704 nodes (4 x NVIDIA Grace Hopper Superchips)
- Storage
 - ClusterStor E1000: 20PB (scratch), 57PB (project)
- Interconnect: HPE Slingshot
- Cooling: closed-loop liquid cooling
- Schedule
 - Operational in 2023 (CPU), 2024 (GPU)

Shaheen II Utilization

- Provided 7.4 Billion Core Hours
- Served 1467 Users

Collaboration with Prof. Matteo Parsani: Full Simulation of Flows Around Racing Cars

Performance Study of Sustained Petascale Direct Numerical Simulation on Cray XC40 Systems

Bilel Hadri*¹ | Matteo Parsani² | Maxwell Hutchinson³ | Alexander Heinecke⁴ | Lisandro Dalcin² | David Keyes²

¹KAUST Supercomputing Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

²Extreme Computing Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia ³Citrine Informatics, Redwood City, California, USA

⁴Intel Corporation, Santa Clara, California, USA

Correspondence

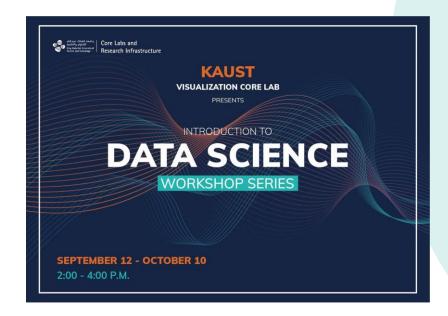
*Bilel Hadri, KAUST Supercomputing Lab, Al Khawarizmi Bidg. (1) Office 126, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900. Email: bilel.hadri@kaust.edu.sa

Abstract

We present in this paper a comprehensive performance study of highly efficient extreme scale direct numerical simulations of secondary flows, using an optimized version of Nek5000. Our investigations are conducted on various Cray XC40 systems, using a very high-order spectral element method. Single-node efficiency is achieved by auto-generated assembly implementations of small matrix multiplies and key vector-vector operations, streaming lossless I/O compression, aggressive loop merging and selective single precision evaluations. Comparative studies across different Cray XC40 systems at scale, Trinity (LANL), Cori (NERSC) and ShaheenII (KAUST), show that a Cray programming environment, network configuration, parallel file system and burst buffer all have a major impact on the performance. All three systems possess a similar hardware with similar CPU nodes and parallel file system, but they have different theoretical peak network bandwidths, different OSs and different versions of the programming environment. Our study reveals how these slight configuration differences can be critical in terms of performance of the application. We also find that with 9216 nodes (294,912 cores) on Trinity XC40 the applications sustains petascale performance, as well as 50% of peak memory bandwidth over the entire solver (500 TB/s in aggregate). On 3072 Xeon PhiTM nodes of Cori, we reach 378 TFLOP/s with an aggregated bandwidth of 310 TB/s, corresponding to time-to-solution 2.11× faster than obtained with the same number of (dual-socket) Xeon[®] nodes.

KEYWORDS

Cray XC40, Haswell, KNL, Nek5000, Performance Analysis, Regression, Energy Efficiency


Significantly enhance simulation accuracy at the full vehicle scale

- Detect and improve performance bottleneck
- Scaling the code up to full Shaheen II

Introduction to Data Science Workshop Series

- **Mission**: Equip students from KAUST and Saudi Arabia to build capacity in core data science tools and methods so they can begin building their data science applications.
- Widely popular series since 2018
- Consisted of hands-on single-day workshops,
 - Introduction to Python for Data Science
 - Introduction to Shell for (Data) Scientists
 - Introduction to Conda for (Data) Scientists
 - Introduction to SQL for Data Science
 - Introduction to Git for (Data) Scientists
- Statistics
 - More than 5000 participants registered
 - 40% In-Kingdom Participants
 - Since 2020, More than 6000 YouTube Views

Building Communities

- Goal: Establishment of National HPC / AI Ecosystem
 - National HPC / AI Infrastructure
 - National HPC / AI Community
- Providing service to in-Kingdom organizations
 - Computing cycle (157 users from 18 organizations)
 - Consulting
 - Training

Community event: e.g., HPC / AI Saudi

Keynote Speakers

premier regional event in the field, where participants can meet each other, share ideas and experiences, and discuss cooperation and collaboration. This is the seventh HPC Saudi event and this year it will focus on coordinated efforts for the

> جامعة الملك عبدالله للعلوم والتقنية

Important Dates

Tutorial Proposal Submissions February 1st, 2017 KAUST Inn Hotel Rese March 1st 2017

Advanced Support for Saudi Aramco: Trillion Node Reservoir Simulation

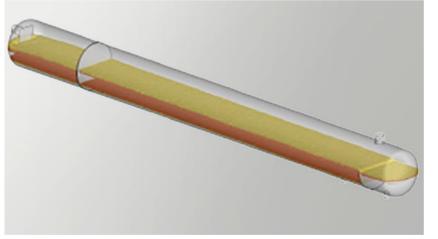
- TeraPOWERS new trillion node reservoir simulation to model oil migration problems in the Kingdom in a fraction of the time of previous run
- Shaheen II serves as the ONLY platform in the Kingdom for TeraPOWERS for developing capability and performing large scale production runs
- "We simulated an oil migration problem in the Kingdom from the source rock to the trap with millions of years of history in 10 hours using 1 trillion active computational cells", Ali Dogru
- "We could not have achieved this incredible milestone without the expertise and resources from KAUST, which provided superb support," Larry Fung

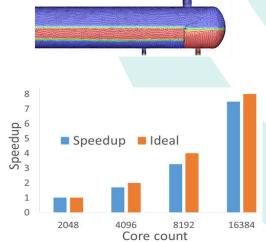
The EXPEC Advanced Research Center (EXPEC ARC) TeraPOWERS Technology Team, under the leadership of Saudi Aramco fellow Ali Dogru, achieved a major breakthrough with the industry's first trillion cell reservoir simulation run on October 28, 2016

Aramco news, Dhahran, November 23, 2016

Saudi Aramco

Multiple Top500 Systems

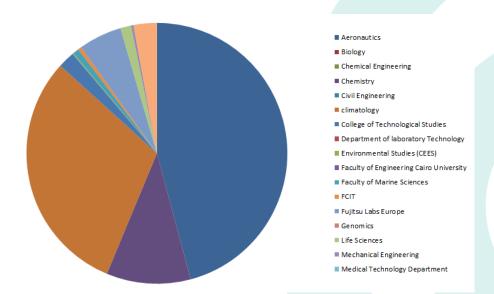

- Dammam-7: #23 (seismic analysis)
- Ghawar-1: #33 (reservoir simulation)
- Unizah-2 (#188), Makman-2 (#393), Makman-3 (#369)


Relevant Division

- Upstream (reservoir, seismic)
- Downstream
- R&D

Gravity Separator

Largest Scale Simulation of Engineering Code (~200,000 Cores)


Saudi Universities

KAU (King Abdulaziz University)

- Aziz Supercomputer (2015)
 - Fujitsu Primergy CX400
 - 230TF Peak Performance (11,904 cores in 496 nodes)
- Major Research Area
 - Aeronautics, climate modeling, genomics

KFUPM (King Fahd University of Petroleum & Minerals)

- Alfahd Cluster (2020)
 - Huawei Fusion / Dell PowerEdge Servers
 - 153TF Peak Performance (3,944 cores in 132 nodes)
- Major Research Area
 - Geoscience, computational chemistry, material science

Saudi Government Agency

- KACST (King Abdulaziz City for Science and Technology)
 - Three Major Functions
 - Laboratories and Technology Development
 - Support for Scientific Research
 - Innovation Support
 - Sanam Supercomputer
 - Adtech
 - 1.1PF Peak Performance (38,400 cores in 210 nodes)
 - #52 in top500 (2012)

NEOM

• Pillars: Three Engines for a Truly Cognitive Infrastructure

HPC explains the past

QUANTUM:

FOR ANALYSIS OF LARGE SCALE STATISTICAL DATA

- Industrial development
- · Financial modelling
- Traffic prediction

Quantum predicts the future

NEUROMORPHIC:

FOR ANALYSIS OF ANY REAL TIME DATA

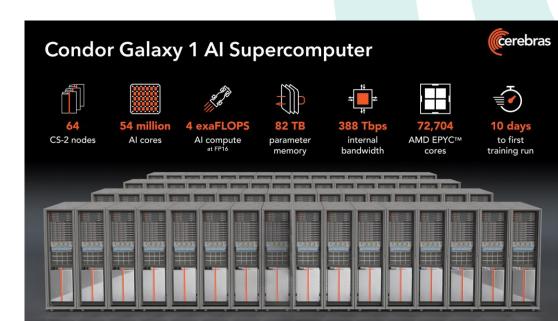
- Robotic control
- · Real time visual analytics
- Real time drone fleet management
- · Autonomous everything

HPC:

FOR ANALYSIS OF LARGE SCALE MULTI-TYPE DATA ON DEMAND (BUT NOT REAL TIME)

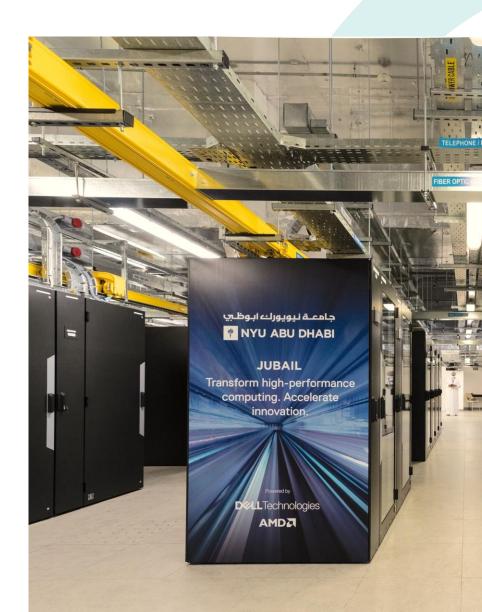
- Weather analysis
- · Macroeconomics analysis
- · Geographic modelling

Neuromorphic enables the present


United Arab Emirates

Computing Resource

- G42 (Group 42) Company
 - Artemis Supercomputer
 - 81 NVIDIA DGX-2
 - 7.26 PF Rmax (#90 in top500)
 - Condor Galaxy 1
 - 64 Cerebras CS-2
 - 4 EF (FP16) from 56 Million AI Cores
 - Plan to deploy two more systems CG systems
 - G42 Cloud maintains several other systems


UAE Universities

NYU AD (New York University Abu Dhabi)

- Jubail Supercomputer
 - Dell PowerEdge
 - 1.5 PF (33,000 cores, 300 nodes)
- Key Research Areas
 - Astrophysics: Center for Space Science and Center for Astro Physics and Particle Physics
 - Chemistry (Simulation, Modeling & NMR): including the Center for Smart Engineering Materials
 - Computer Science: NLP & Machine Learning

MBZUAI (Mohamed bin Zayed University of Artificial Intelligence)

- Campus Supercomputing Center
 - 25 DGX-2, 18 DGX, 64 GPU nodes (4 A100), 32 CPU nodes

Thank you!

jysoo.lee@kaust.edu.sa