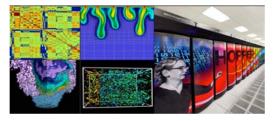


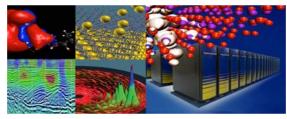
## Perlmutter and the Next Procurement - NERSC-10

HPC User Forum 2023 Tucson AZ Nick Wright Chief Architect & Advanced Technologies Group Lead 7th Sept 2023

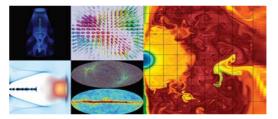
## **NERSC: Mission HPC for DOE Office of Science Research**



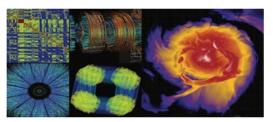




# Largest funder of physical science research in the U.S.

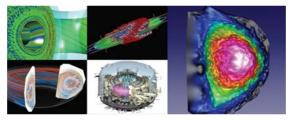



Biological and Environmental Research




Computing




**Basic Energy Sciences** 



**High Energy Physics** 

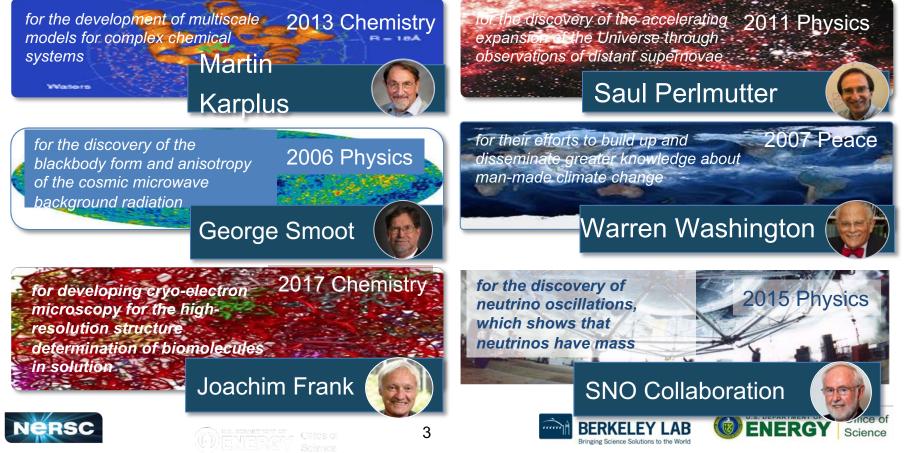


**Nuclear Physics** 

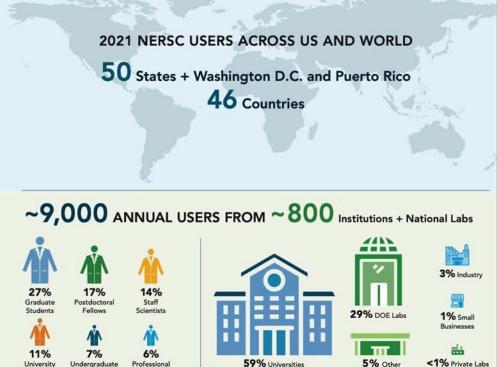


Fusion Energy, Plasma Physics




2






# **Nobel-Prize Winning Users**





## **NERSC** by the Numbers





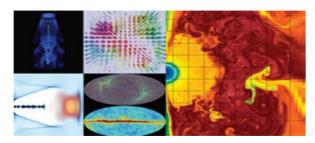
NERSC has been acknowledged in 5,829 refereed scientific publications & high profile journals since 2020

- Nature [32]
- Nature Communications [116]
- Proceedings of the National Academy of Sciences [55]
- Science [21]
- Nature family of journals [232]
- Monthly Notices of the Royal Astronomical Society [248]
- Physical Review B : Condensed Matter and Materials Physics [206]
- Physical Review D : Particles, Fields, Gravitation, and Cosmology [200]

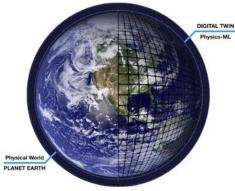


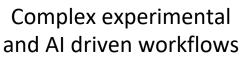
Undergraduate

Professional


Universit

Faculty


g Science Solutions to the World




## We Accelerate Scientific Discovery for Thousands of Office of Science Users with 3 Advanced Capability Thrusts



Large-scale applications for simulation, modeling and data analysis



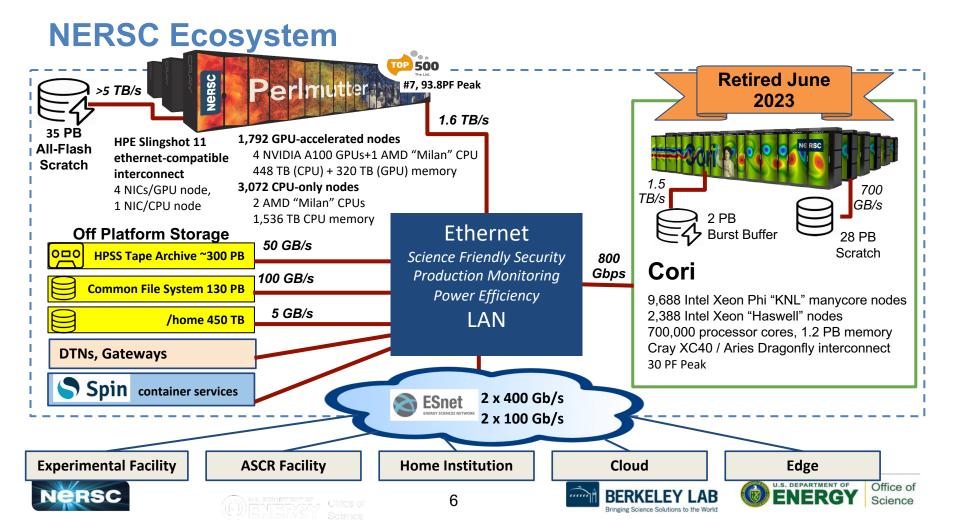




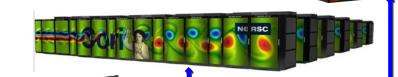
Time-sensitive and interactive computing

#### The NERSC workload is diverse with growing emphasis on integrated research workflows








Office of

Science



## **NERSC Systems Roadmap**



2016

NERSC-7: Edison

2020

Iersc

NERSC-9: Perlmutter CPU and GPU nodes NESAP Expanded Simulation, Learning & Data: Continued transition of applications and support for complex workflows NERSC-10: Exa system NESAP Workflows: Accelerating end-to-end workflows with technology integration NERSC-11: Beyond Moore

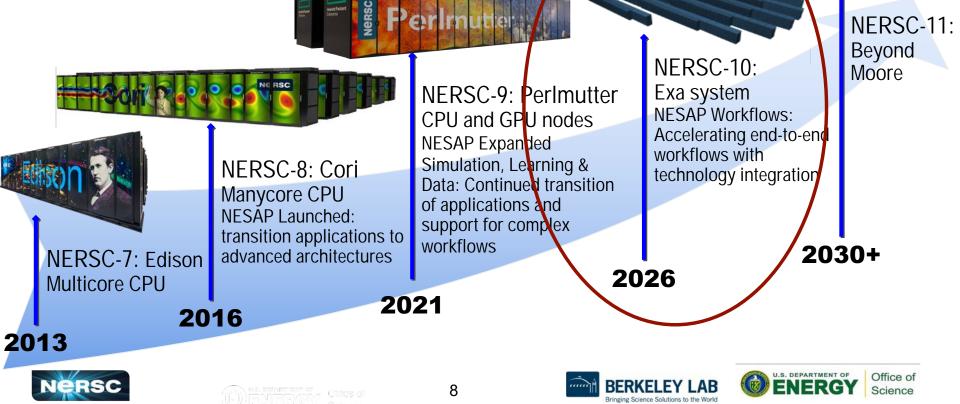
2030+



2013

Multicore CPU

7




2026





## NERSC Systems Roadmap



# Forming NERSC-10 Strategy



- Target 4QCY2026 Delivery
  - 10x Perlmutter on applications
- Can we use the same strategy as we did Perlmutter – (~2017 for 2020 delivery) ?
- Examine trends in
  - Technology
  - Market & Vendor Landscape
  - User Community







# **Technology Trends**

- No more increases in clock speed for CPUs & GPUs
  - More & more cores
- End of Moore's Law
  - Performance per socket may continue to double through
- Increases in performance will primarily be obtained through power increases
  - At the socket & the system level
- Tighter & Tighter CPU-GPU integration
  - Grace-Hopper from NVIDIA
  - MI-300 from AMD
- Flash Storage will continue to increase in capacity and eat into HDD space







# Software Technology Trends

Chip-vendor provides user software toolchains

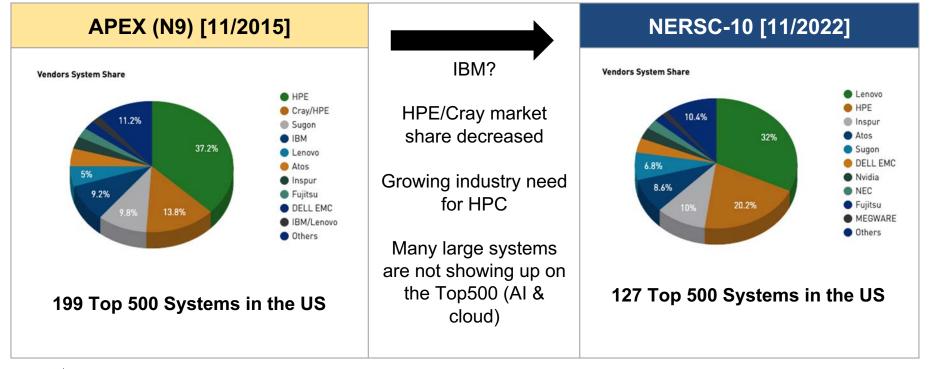
Service-oriented architectures and microservices enable resilience and extreme scale for workflows

- Containerized services (Docker, LXC)
- "serverless" computing (Lambda)

Software-defined/programmable infrastructure

- Software-defined networking (SDN, SD-MPLS, EVPN)
- Software-defined storage (SPDK)

AI for operations and resource management


- Anomaly detection, cybersecurity
- Energy efficiency and automated controls
- Complex scheduling





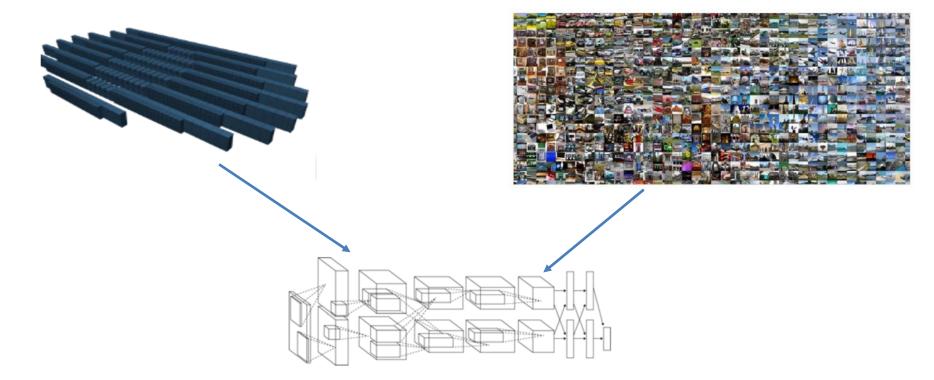


## Vendor Landscape Has Changed Dramatically



Engage with numerous vendors to reinvigorate and redefine the landscape of technology providers and integrators

12







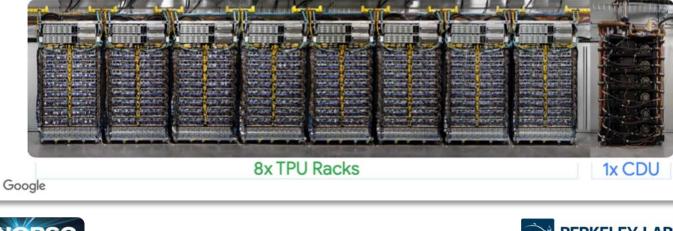



## What About Deep Learning?












Bringing Science Solutions to the World

#### The System

- Each system consists of 64 Google racks, deployed in 8 groups of 8
  - 4096 interconnected chips sharing 256TiB of HBM memory
  - Total compute >1 ExaFLOP
  - Each group of 8 racks gets a CDU (Coolant Distribution Unit)
- Dozens of systems deployed [Sundar, Google I/O]
  - Up to 8 superpod systems in a single cluster!



A Machine Learning Supercomputer With An Optically Reconfigurable Interconnect and Embeddings Support Norman Jouppi & Andy Swing, Google Hotchips 2023

Office of

Science



15





10

#### The Fiber

- Each Superpod has enough fiber to encircle the state of Rhode Island!
- Over 16,000 individual connections
- Major focus on deployability and serviceability





A Machine Learning Supercomputer With An Optically Reconfigurable Interconnect and Embeddings Support Norman Jouppi & Andy Swing, Google Hotchips 2023

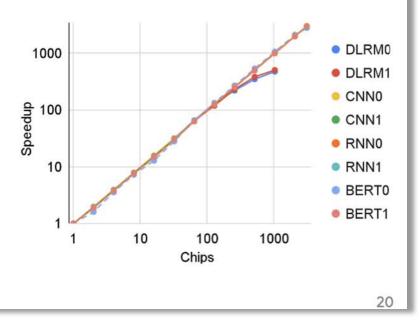
#### Google







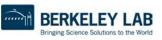





13



#### Scalability


- Goal was to create a highly scalable balanced system
- Hence TPUs connected by high BW to distributed shared memory
- We have ~linear speedups up to 3072 chips on internal workloads except for DLRMs



Learning Supercomputer With An Optically Reconfigurable Interconnect and Embeddings Support Norman Jouppi & Andy Swing, Google Hotchips 2023

A Machine







## AI – Training and Inference vs HPC

#### Al

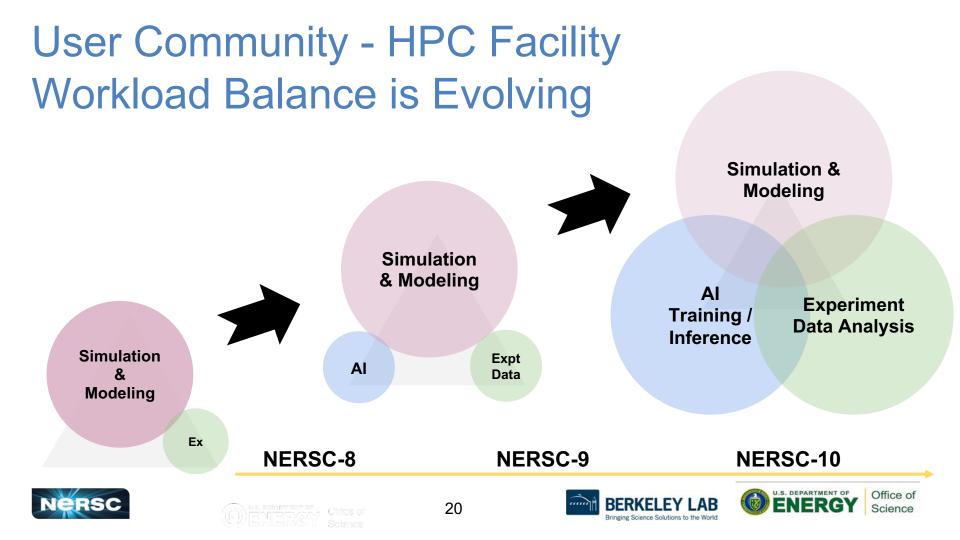
- ~\$300B market by 2026
- Smaller breadth of applications
  - GEMM dominant operation
  - FP16 and lower precision
  - Well understood persistent communication patterns
  - Complicated software stack
  - Storage ?

#### HPC

- ~\$10B market by 2026
- Large breadth of applications
  - Often limited by memory bandwidth (not GEMM)
  - Need FP64
  - (Usually) not communication limited
  - Very complicated software stack
  - Parallel I/O at scale
- No real HPC analogue of Inference
- Both need liquid-cooled, serviceable and scalable deployments

18






## Impact of AI/machine Learning on HPC?

- Liquid-cooling technologies will become commoditized
- Routine deployment of supercomputing scale resources should facilitate better, more robust solutions
  - Today capabilities of Cloud-based Deep Learning Supercomputer resources are equal to (or greater than) .gov ones
- HPC centers will need to focus on where they can add unique value







## N10 User Requirements

Users require support for new paradigms for data analysis with **real-time interactive feedback between experiments and simulations**.

Users need the ability to search, analyze, reuse, and combine data from different sources into **large scale simulations and Al models**.

NERSC-10 Mission Need Statement: The NERSC-10 system will accelerate endto-end DOE SC workflows and enable new modes of scientific discovery through the integration of experiment, data analysis, and simulation.







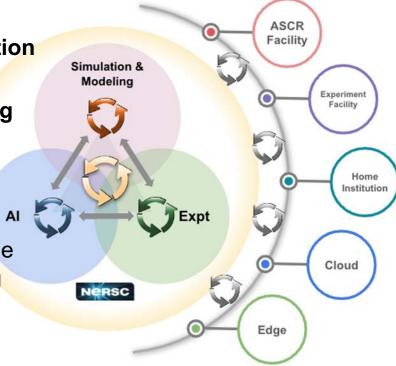
Office of

Science

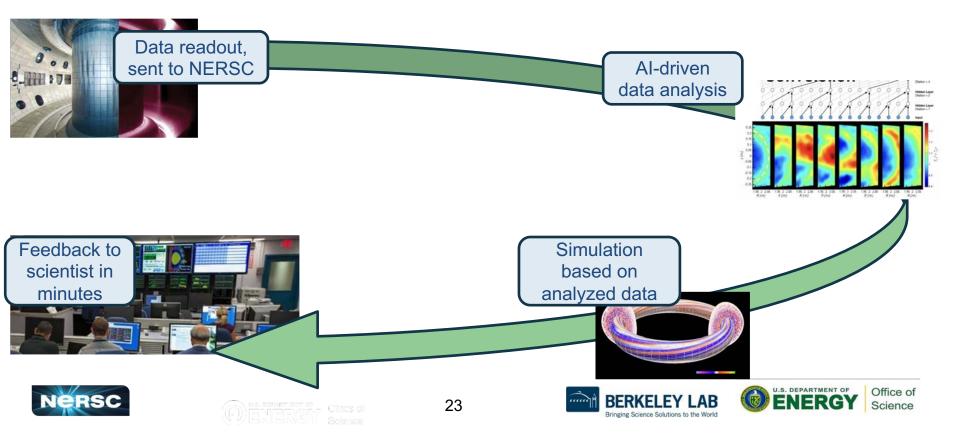
## What is an HPC Workflow?

Workflows are interconnected computational and dataflow tasks with data products. They have task coupling (control flow) and/or data movement between tasks (data flow).

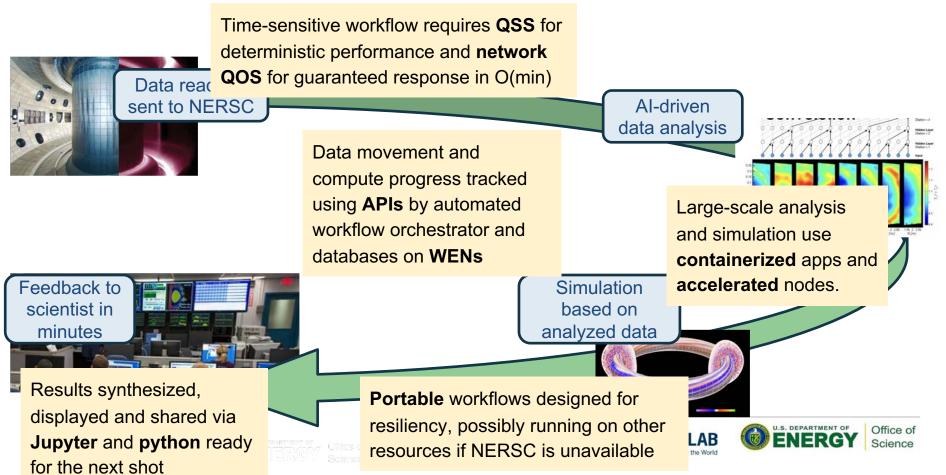
22


High performance computing (HPC) workflows interconnect computational and data manipulation steps across one/some/all of:

- High performance simulation and modelling
- High performance Al workflows
- High performance data analytics


We've been running workflows for decades - but the complexity and timeliness of workflows is changing which motivates a new approach with N10.








## Example of Cross-facility Workflow: Fusion Experiment



## Example of Cross-facility Workflow: Fusion Experiment



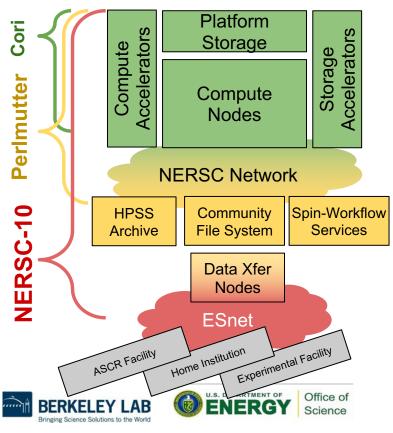
# We identified 6 workflows archetypes to help define our vision for N10

| 1. High-performance simulation & modeling workflow                            | large-scale multi-physics applications with checkpoint/restart, data post-processing, visualization  |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 2. High-performance AI (HPAI) workflow                                        | data integration-intensive science patterns such as training, inference, hyperparameter optimization |
| 3. Cross-facility workflow: Rapid data analysis and real time steering        | time-sensitive science patterns such as superfacility, edge, and hybrid cloud                        |
| 4. Hybrid HPC-HPAI-HPDA workflow                                              | long-term campaign science patterns, Al-in-the-loop, Al-<br>around-the-loop                          |
| 5. Scientific data lifecycle workflow:<br>Interactive, data-analytics and viz | data integration-intensive science patterns such as Jupyter, scientific databases, VSCode            |
| 6. External event-triggered and API-<br>driven workflow                       | time-sensitive science patterns such as function-as-a-<br>service, microservices                     |

# We identified 6 workflows archetypes to help define our vision for N10

| 1. High-perfor                                          | mance simulation &                                           | large-scale multi-physics applications                                           | with         |  |
|---------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------|--------------|--|
| modeling wor                                            | , visualization                                              |                                                                                  |              |  |
| 2. High-perfor                                          | Workflows Arch                                               | ns such as<br>nization                                                           |              |  |
| 3. Cross-facili<br>analysis and r                       | Deborah Bard, Taylor Groves, Bi<br>Brian Austin, Kevin Gott, | superfacility,                                                                   |              |  |
| 4. Hybrid HP <mark>C</mark>                             | Jay Srinivasan, Ha                                           | l·in-the-loop, Al-                                                               |              |  |
| 5. Scientific da                                        | search for "NERS                                             | SC workflows white paper"                                                        | erns such as |  |
|                                                         | ta-analytics and viz                                         | Jupyter, scientific databases, VSCode                                            |              |  |
| 6. External event-triggered and API-<br>driven workflow |                                                              | time-sensitive science patterns such as function-as-a-<br>service, microservices |              |  |

## HPC Workflows Drive Advanced Technology Capabilities


|                                        | Cloud<br>native/<br>containers | QoS<br>storage<br>system<br>(QSS) | End<br>-to-<br>end<br>API | Network/<br>scheduling<br>QoS | IRI/ Multi-<br>site<br>workflows | Smart<br>networkin<br>g | Prog.<br>Env | Workflow<br>Enablement<br>Nodes (WEN,<br>fka Spin) |
|----------------------------------------|--------------------------------|-----------------------------------|---------------------------|-------------------------------|----------------------------------|-------------------------|--------------|----------------------------------------------------|
| 1.Simulation & modeling                |                                | Х                                 | Х                         |                               |                                  | Х                       | X            |                                                    |
| 2.AI                                   | Х                              | Х                                 | Х                         | Х                             | X                                | Х                       | X            | Х                                                  |
| 3.Cross-facility                       | Х                              | X                                 | Х                         | Х                             | Х                                | Х                       |              | Х                                                  |
| 4.Hybrid HPC-<br>HPAI-HPDA             | Х                              | Х                                 | Х                         | Х                             | Х                                | Х                       | X            | Х                                                  |
| 5.Scientific data<br>lifecycle         | Х                              | Х                                 | Х                         | Х                             |                                  |                         | X            | Х                                                  |
| 6.Event-<br>triggered & API-<br>driven | Х                              | Х                                 | Х                         | X                             |                                  | Х                       | Х            | Х                                                  |

## HPC Workflows Drive Advanced Technology Capabilities

|                                        | Cloud<br>native/<br>containers | QoS<br>storage<br>system<br>(QSS) | End<br>-to-<br>end<br>API | Network/<br>scheduling<br>QoS          | IRI/ Multi-<br>site<br>workflows | Smart<br>networkin<br>g   | Prog.<br>Env | Workflow<br>Enablement<br>Nodes (WEN,<br>fka Spin) |
|----------------------------------------|--------------------------------|-----------------------------------|---------------------------|----------------------------------------|----------------------------------|---------------------------|--------------|----------------------------------------------------|
| 1.Simulation & modeling                |                                | Х                                 | Х                         |                                        |                                  | X                         | X            |                                                    |
| 2.AI                                   | Х                              | Х                                 | Х                         | Х                                      | X                                | Х                         | Х            | Х                                                  |
| 3.Cross-facility                       | х                              | Х                                 | Х                         | Х                                      | X                                | Х                         |              | Х                                                  |
| 4.Hybrid HPC-<br>HPAI-HPDA             | Х                              | Х                                 | Х                         | X                                      | Х                                | Х                         | X            | Х                                                  |
| 5.Scientific data lifecycle            | Х                              |                                   |                           | ×<br>nnot be dor                       |                                  |                           | X            | X                                                  |
| 6.Event-<br>triggered & API-<br>driven | Х                              | × Gr                              | een:                      | can be don<br>can be <sup>x</sup> done | e only with<br>today in li       | n extraordin<br>mited way | ary eff<br>X | ort X                                              |

### NERSC-10 Architecture: Designed to Support Complex Simulation and Data Analysis Workflows at High Performance

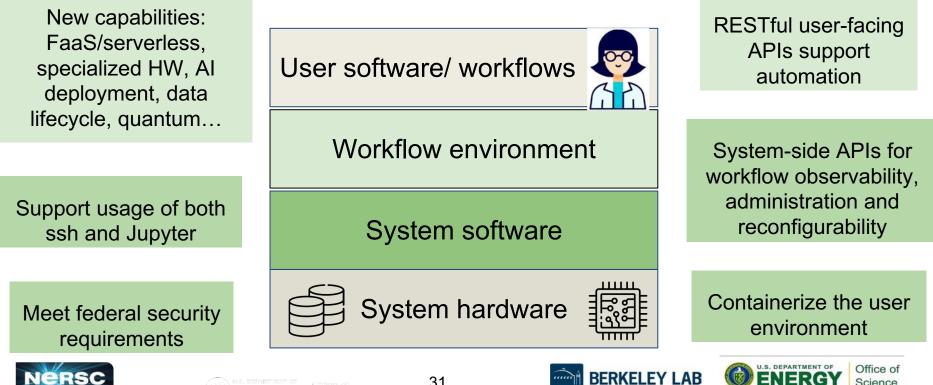
- Quality of Service computation, storage and networking designed to emphasize response-time plus throughput/utilization.
- **Seamlessness** tight integration of system components to enable high performance across workflow steps.
- Portability Modular workflow execution across heterogeneous HPC, edge and cloud.
- **Programmability** APIs to manage data, execute distributed code, and interact with system resources.
- **Orchestration** coordinate resource management across different resource domains.
- Security authentication, authorization and auditing (e.g., identify proofing, access/privacy control, records of transactions).



# **Resulting NERSC-10 Strategy**



- Allow vendors who have not responded to DOE leadership-class RFP before to participate
  - Reduce number of requirements (90 TR-1, 23 TR-2, 15 TR-3)
  - No mandatory requirements request DOE Independent Review Board (IRB)
  - Extensive, inclusive market survey include cloud/AI vendors
- Early release of technical requirements draft (available April 2023)
  - Frequent and often communication
- Do not prescribe a solution describe problem
  - Partially necessitated by advanced timeline
  - Provide conduit for vendor discussion and eventual collaboration
- Enable Complex Workflows
  - Co-design software through user engagement
- Focus remains on maximizing science within existing constraints


30

Peak FLOPS will not appear in RFP





## Innovation in software is key to enabling complex workflows







Science

## Summary

- HPC is at an inflection point
  - Zettascale
    - End of Moore's Law
  - Deep Learning training is routinely performed using supercomputers today
- N10 will deliver 10x Perlmutter performance on HPC workflows
- The N10 RFP is expected next year, system delivery in 2026







## Thanks!



