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NERSC: Mission HPC for the Dept of Energy Office of Science

Large compute and data systems
e Perlmutter: ~7k A100 GPUs
e 30 PB all-flash scratch filesystem

e 128PB Community Filesystem ....

m

Broad science user base

e 7/.,000 users,
e 3800 projects,
e /00 codes
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NERSC Al Strategy

* The intersection of HPC, Al, & science

* Focus activities in three main areas:
NERSC Al

Supercomputing

Methods and Appllcatlons Deployment Empowerment

[ Automation ][ Interactivity ]

Software Frameworks and Libraries

Systems w/
Accelerators
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NERSC Al in Earth Sciences

We see cutting-edge earth science Al pushing

supercomputers to their limits

e Al beginning to revolutionize weather & climate modeling
e These challenges drive innovation in both ML and HPC

| Perlmugter;,

Highlighting some example projects:

o 2018 DeepCAM (Gordon Bell Prize)
o High-resolution climate segmentation model
o Detection of hurricanes, atmospheric rivers, tropical storms
o Aid and accelerate climate analytics

e 2022 FourCastNet
o High-resolution forecasting model
o  Superior global medium-range weather skill
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https://dl.acm.org/doi/10.5555/3291656.3291724
https://arxiv.org/abs/2208.05419

FourCastNet: Data-driven atmospheric

forecasting at scale
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Weather forecasting

* Urgency under climate change:
o Reducing uncertainties, predicting
extremes, disaster mitigation, etc...
* Entire earth system: complex phenomena
across wide range of physical scales

* Traditional NWP consumes substantial
HPC resources
o Dedicated machines running physical
models + data assimilation 24/7
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Ingredients of NWP

*PDEs w/ hundreds of variables, complex ——
. . . (Latitude-Longitude)
parameterizations for subgrid and
multi—physics processes

Vertical Grid )
(Height or Pressure) |~

*Large ensembles for UQ and long-term
forecasting

*High resolution grids (computational
cost scales as ~fourth power)

Credit: NOAA
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http://celebrating200years.noaa.gov/breakthroughs/climate_model/

Ingredients of NWP

- Data assimilation of observations on
(6-12)hr cycles (4D-Var EnKF for ECMWF
IFS model)

o Operationally, this produces
“analysis” states

*Additional post-processing: “reanalysis”

o ERAS current best for atmospheric
reanalysis data

;

analysis
Jo
Qbs Corrected
forecast

Previous

forecast
Obs :

1 I I o
3UTC 6UTC 9UTC 12UTC 15UTC  Time

Assimilation window

Credit: ECMWFE

ERAS5 monthly 2m temperature - J y 2016
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https://www.ecmwf.int/en/about/media-centre/news/2017/20-years-4d-var-better-forecasts-through-better-use-observations

Data-driven weather & climate forecasting

* ERAS reanalysis dataset: 40 years, 25km global
grid, assimilated with observations. “Best
available estimate of earth’s atmospheric state”

EEEEEEEEEEEE off' ice o f

EN ERGY Science

10




Data-driven weather & climate forecasting

* ERAS reanalysis dataset: 40 years, 25km global
grid, assimilated with observations. “Best
available estimate of earth’s atmospheric state”

* Potential gold mine for data-driven forecasting
models:
o Overcome model biases; use
mixed-precision & GPUs for fast inference
o Challenge: very high-dimensional state
space (~150M ‘pixels’ for a single variable)
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Data-driven weather & climate forecasting

* Despite small-scale beginnings,
deep learning has seen rapid
progress in this area recently

* FourCastNet was first to forecast
weather at resolution and skill %
comparable to production NWP
models like IFS

FourCastNet, Pathak et al. (2022), 0.25°, ~1,000,000 Pixels, ViT+FNO

u GNN, Keisler et al. (2022), 1°, 64,000 Pixels, Graph Neural Networks

DLWP, Weyn et al. (2020). 2°, 16K pixels, Deep CNN on Cubesphere/(2021) ResNet

B weyn et al. (2019), 2.5° N.H only, 72x36, 2.6k pixels, ConvLSTM

BS%  WeatherBench, Rasp et al. (2020). 5.625°, 64x32, 2K pixels, CNN

|

. Deuben & Bauer (2018), 6° , 60x30, 1.8K pixels, MLP
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Data-driven weather & climate forecasting

* Now, multiple deep learning models approach or
outperform forecast skill of traditional NWP

* Training recipes vary, but general theme is training large

networks on a large chunk of ERA5S

o All (except GraphCast) are transformer-based
o Large scale: some models require weeks of

training on hundreds of GPUs
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https://arxiv.org/pdf/2211.02556
https://arxiv.org/pdf/2212.12794
https://arxiv.org/abs/2304.02948
https://arxiv.org/abs/2202.11214

Scaling FourCastNet on HPC systems
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FourCastNet model: Adaptive FNO

Adaptive FNO architecture replaces expensive self-attention in vision
transformers with token mixing via FFTs
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Guibas et al. “Adaptive Fourier Neural Operators: Efficient Token Mixing for Transformers.”

arXiv:2111.13587 (ICLR 2022).
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Models Complexity (FLOPs) Parameter Count
Self-Attention | N°d + 3Nd* 3d*
AFNO (ours) | Nd?/k+ NdlogN (1 +4/k)d? +4d

N is set by resolution and patch size

channels
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https://arxiv.org/abs/2111.13587

FourCastNet: scaling for future

*Resolution is key: future efforts will leverage data at 10km, 5km, (eventually)
1km grids. How do we scale up?

Models Complexity (FLOPs)  Parameter Count
AFNO (ours) | Nd?/k 4+ NdlogN (14 4/k)d? + 4d

_ Current (25 km) Intermediate (5 ) Large (1 km)

N(p=1) 625M
FFTs 720 x 1440 ( d of them) 3600 x 7200 ( d of them) 18k x 36k ( d of them)
Matmul [4d x d] * [d] (N of them) [4d xd] * [d] (N of them) [4d xd] * [d] (N of them)

Different parallelization strategies needed to balance spatiotemporal resolution,
model capacity, and hardware constraints
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Beyond data parallel training

embedding size

* Feature parallelization
splitting channel dim, dense
layers become distributed
matrix multiplications

£ BxHxW

allgather/allreduée

hidden size/#proc

hidden size

B X embedding size B X embedding{size

- Domain decomposition
splitting height and width, FFT |
become distributed, LayerNorm H #
needs to exchange stats
W
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FourCastNet++: hybrid data-model parallel training

Inset: Ch

Vertical Level Variables

Surface Uyo, Vio. T, sp, mslp
1000k Pa uv,v,z

850h Pa T,U,V,Z RH
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Split MLP features along channel dimensions
for model parallelism

FFT-based spatial mixing operates on disjoint
blocks, so embarrassingly parallel
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FourCastNet++: hybrid data-model parallel training

Model instance 1

Data parallel
comms

Model instance 2

*Model parallelism across GPUs within a node:
model instance

o Exploit high-speed NVLink conneciton

-Data parallelism across model instances

o Gradient reduction during SGD happens
across model instances

*Implement with separate communicators for
model and data parallel comms

*Similar to state-of-the-art massive LLMs, e.g.
Megatron-LM
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https://github.com/NVIDIA/Megatron-LM

Scaling results

*Preliminary scaling study conducted on 25km resolution, with patch size=4
*Scaling results across three HPC systems: 140.8 PFLOP/s on ~4000 GPUs
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Scaling results

*Preliminary scaling study conducted on 25km resolution, with patch size=4

*Scaling results across three HPC systems: 140.8 PFLOP/s on ~4000 GPUs

*Time to solution can be reduced to ~1hr or less

Perimutter
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102 m instance size 2
instance size 4

peak PFLOP/s

i
S,
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#GPU
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Validation loss

——— Perlmutter batch size 392, instance size 4
- JUWELS batch size 768, instance size 4
=~ JUWELS batch size 416, instance size 4
—— Selene batch size 512, instance size 1

Details:

Kurth et al.

PASC 2023 Best Paper
https://dl.acm.org/doi/abs/10.1

145/3592979.3593412
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https://dl.acm.org/doi/abs/10.1145/3592979.3593412
https://dl.acm.org/doi/abs/10.1145/3592979.3593412

Looking forward: from weather to climate
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From weather to climate

*Deep learning offers exciting new capabilities for medium-range weather forecasting

*What can we do as we move beyond that?

Weather forecasts e
predictability comes from initial "’ ‘\\
atmospheric conditions ’ ~
Climatology ’ "
Sub-seasonal forecasts 7 \
predictability comes from monitoring the / \
Madden-Julian Oscillation, land surface \‘
data, and other sources ’ \
1 Forecast
Seasonal forecasts Initial condition ' “
excellent F'Cdﬁ:l?bl"()’ comes ;:-',m;‘:'nly from uncertainty 1 1
sea-surface temperature data 1 1
accuracy dependent on ENSO state 1 1
1
good 1 ,'
' '
1
/
fair . U

FORECAST SKILL

poor
\ . - Oetorministic
zero 0 — — — - = - — | time - forecast

10 20730 40 50 760 70 80 90 100 110 120
FORECAST LEAD TIME (days)

https://iri.columbia.edu/news/ga-subseasonal-prediction-project
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https://iri.columbia.edu/news/qa-subseasonal-prediction-project

From weather to climate

*Fast inference enables (very) large-scale ensembles

*Hindcasting with large ensembles can be done against both historical record as well as
weather states from future climate scenarios: characterize uncertainty/likelihoods
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From weather to climate

e Characterizing likelihood of extreme events is a major challenge of climate science

e\We are now positioned to do so with AlI+HPC:
oCouple fast forecasting models with advanced climate analytics engines like TECA
oAnswer questions like “how does the frequency of hurricanes look in 2050” with er

ror bars
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Other future directions

Computational scale
- train with 10km, 5km, 1km data
- All vertical levels for full 3D structure
- “Full” spatiotemporal model

*Explicitly incorporating physics
- Conservation terms, better stability, etc.
- Coupling with climate models

*Better ensembling

- Generative models, learned perturbations
- Uncertainty quantification

*Direct data assimilation into DL model

Horizontal Grid
(Latitude-Longitude)

Vertical Grid y
(Height or Pressure) |~

—p
CONTINENT
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