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Outline
• AI4Earth @ NERSC overview

• Data-driven forecasting state of practice

• FourCastNet background

• Scaling FourCastNet

• Entering the climate realm
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NERSC: Mission HPC for the Dept. of Energy Office of Science

Large compute and data systems
● Perlmutter: ~7k A100 GPUs
● 30 PB all-flash scratch filesystem
● 128PB Community Filesystem ....

Broad science user base

● 7,000 users, 
● 800 projects, 
● 700 codes
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NERSC AI Strategy

Systems w/     
Accelerators

EmpowermentDeploymentMethods and Applications 

Software Frameworks and Libraries

Automation Interactivity

NERSC AI

•The intersection of HPC, AI, & science

•Focus activities in three main areas:
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NERSC AI in Earth Sciences

We see cutting-edge earth science AI pushing 
supercomputers to their limits

● AI beginning to revolutionize weather & climate modeling
● These challenges drive innovation in both ML and HPC

Highlighting some example projects: 
● 2018 DeepCAM (Gordon Bell Prize)

○ High-resolution climate segmentation model
○ Detection of hurricanes, atmospheric rivers, tropical storms
○ Aid and accelerate climate analytics

● 2022 FourCastNet
○ High-resolution forecasting model
○ Superior global medium-range weather skill

https://dl.acm.org/doi/10.5555/3291656.3291724
https://arxiv.org/abs/2208.05419


FourCastNet: Data-driven atmospheric 
forecasting at scale
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Weather forecasting

•Urgency under climate change:
o Reducing uncertainties, predicting 

extremes, disaster mitigation, etc…
•Entire earth system: complex phenomena 
across wide range of physical scales

•Traditional NWP consumes substantial 
HPC resources

o Dedicated machines running physical 
models + data assimilation 24/7
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Ingredients of NWP
• PDEs w/ hundreds of variables, complex 
parameterizations for subgrid and 
multi–physics processes

• Large ensembles for UQ and long-term 
forecasting

•High resolution grids (computational 
cost scales as ~fourth power)

Credit: NOAA

http://celebrating200years.noaa.gov/breakthroughs/climate_model/
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Ingredients of NWP

• Data assimilation of observations on 
(6-12)hr cycles (4D-Var EnKF for ECMWF 
IFS model)

o Operationally, this produces 
“analysis” states

•Additional post-processing: “reanalysis”
o ERA5 current best for atmospheric 

reanalysis data

Credit: ECMWF

https://www.ecmwf.int/en/about/media-centre/news/2017/20-years-4d-var-better-forecasts-through-better-use-observations
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Data-driven weather & climate forecasting

•ERA5 reanalysis dataset: 40 years, 25km global 
grid, assimilated with observations. “Best 
available estimate of earth’s atmospheric state”
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Data-driven weather & climate forecasting

•ERA5 reanalysis dataset: 40 years, 25km global 
grid, assimilated with observations. “Best 
available estimate of earth’s atmospheric state”

•Potential gold mine for data-driven forecasting 
models:

o Overcome model biases; use 
mixed-precision & GPUs for fast inference

o Challenge: very high-dimensional state 
space (~150M ‘pixels’ for a single variable)
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Data-driven weather & climate forecasting

• Despite small-scale beginnings, 
deep learning has seen rapid 
progress in this area recently

• FourCastNet was first to forecast 
weather at resolution and skill 
comparable to production NWP 
models like IFS



13

Data-driven weather & climate forecasting

• Now, multiple deep learning models approach or 
outperform forecast skill of traditional NWP

• Training recipes vary, but general theme is training large 
networks on a large chunk of ERA5

o All (except GraphCast) are transformer-based
o Large scale: some models require weeks of 

training on hundreds of GPUs

Pangu-Weather GraphCast FengWu

FourCastNet

https://arxiv.org/pdf/2211.02556
https://arxiv.org/pdf/2212.12794
https://arxiv.org/abs/2304.02948
https://arxiv.org/abs/2202.11214


Scaling FourCastNet on HPC systems
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FourCastNet model: Adaptive FNO
Adaptive FNO architecture replaces expensive self-attention in vision 
transformers with token mixing via FFTs

Guibas et al. “Adaptive Fourier Neural Operators: Efficient Token Mixing for Transformers.” 
arXiv:2111.13587 (ICLR 2022).

N is set by resolution and patch size
N 

https://arxiv.org/abs/2111.13587
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FourCastNet: scaling for future
•Resolution is key: future efforts will leverage data at 10km, 5km, (eventually) 
1km grids. How do we scale up?

•Different parallelization strategies needed to balance spatiotemporal resolution, 
model capacity, and hardware constraints
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Beyond data parallel training

• Feature parallelization
splitting channel dim, dense 
layers become distributed 
matrix multiplications

• Domain decomposition
splitting height and width, FFT 
become distributed, LayerNorm 
needs to exchange stats
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FourCastNet++: hybrid data-model parallel training

Split MLP features along channel dimensions 
for model parallelism

FFT-based spatial mixing operates on disjoint 
blocks, so embarrassingly parallel
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FourCastNet++: hybrid data-model parallel training

•Model parallelism across GPUs within a node: 
model instance

o Exploit high-speed NVLink conneciton

•Data parallelism across model instances
o Gradient reduction during SGD happens 

across model instances

•Implement with separate communicators for 
model and data parallel comms

•Similar to state-of-the-art massive LLMs, e.g. 
Megatron-LM

GPU node

GPU node

Model instance 1

Model instance 2

Data parallel
comms

https://github.com/NVIDIA/Megatron-LM
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Scaling results
•Preliminary scaling study conducted on 25km resolution, with patch size=4

•Scaling results across three HPC systems: 140.8 PFLOP/s on ~4000 GPUs
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Scaling results
•Preliminary scaling study conducted on 25km resolution, with patch size=4

•Scaling results across three HPC systems: 140.8 PFLOP/s on ~4000 GPUs

•Time to solution can be reduced to ~1hr or less

Details:
Kurth et al.
PASC 2023 Best Paper
https://dl.acm.org/doi/abs/10.1
145/3592979.3593412

https://dl.acm.org/doi/abs/10.1145/3592979.3593412
https://dl.acm.org/doi/abs/10.1145/3592979.3593412


Looking forward: from weather to climate
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•Deep learning offers exciting new capabilities for medium-range weather forecasting

•What can we do as we move beyond that?

From weather to climate

https://iri.columbia.edu/news/qa-subseasonal-prediction-project

https://iri.columbia.edu/news/qa-subseasonal-prediction-project
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•Fast inference enables (very) large-scale ensembles

•Hindcasting with large ensembles can be done against both historical record as well as 
weather states from future climate scenarios: characterize uncertainty/likelihoods

From weather to climate
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●Characterizing likelihood of extreme events is a major challenge of climate science

●We are now positioned to do so with AI+HPC:
○Couple fast forecasting models with advanced climate analytics engines like TECA
○Answer questions like “how does the frequency of hurricanes look in 2050” with error bars

From weather to climate
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Other future directions
•Computational scale 

 - train with 10km, 5km, 1km data
- All vertical levels for full 3D structure
- “Full” spatiotemporal model

•Explicitly incorporating physics
 - Conservation terms, better stability, etc.
- Coupling with climate models

•Better ensembling
 - Generative models, learned perturbations
- Uncertainty quantification

•Direct data assimilation into DL model


