HPC+AI for Earth Sciences at NERSC

Peter Harrington Data & Analytics Services, NERSC Lawrence Berkeley National Laboratory

Outline

- Al4Earth @ NERSC overview
- Data-driven forecasting state of practice
- FourCastNet background
- Scaling FourCastNet
- Entering the climate realm

NERSC: Mission HPC for the Dept. of Energy Office of Science

Large compute and data systems

- Perlmutter: ~7k A100 GPUs
- 30 PB all-flash scratch filesystem
- 128PB Community Filesystem

Broad science user base

- 7,000 users,
- 800 projects,
- 700 codes

Office of

Science

NERSC AI in Earth Sciences

We see cutting-edge earth science AI pushing supercomputers to their limits

- Al beginning to revolutionize weather & climate modeling
- These challenges drive innovation in both ML and HPC
- Highlighting some example projects:
 - 2018 <u>DeepCAM</u> (Gordon Bell Prize)
 - High-resolution climate segmentation model
 - Detection of hurricanes, atmospheric rivers, tropical storms
 - Aid and accelerate climate analytics
 - 2022 <u>FourCastNet</u>
 - High-resolution forecasting model
 - Superior global medium-range weather skill

Office of

Science

FourCastNet: Data-driven atmospheric forecasting at scale

Weather forecasting

• Urgency under climate change:

- Reducing uncertainties, predicting extremes, disaster mitigation, etc...
- Entire earth system: complex phenomena across wide range of physical scales
- Traditional NWP consumes substantial HPC resources
 - Dedicated machines running physical models + data assimilation 24/7

Ingredients of NWP

- PDEs w/ hundreds of variables, complex parameterizations for subgrid and multi–physics processes
- Large ensembles for UQ and long-term forecasting
- •High resolution grids (computational cost scales as ~fourth power)

Office of

Science

Ingredients of NWP

- Data assimilation of observations on (6-12)hr cycles (4D-Var EnKF for ECMWF IFS model)
 - Operationally, this produces "analysis" states
- Additional post-processing: "reanalysis"
 ERA5 current best for atmospheric reanalysis data

Credit: ECMWF

• ERA5 reanalysis dataset: 40 years, 25km global grid, assimilated with observations. "Best available estimate of earth's atmospheric state"

- ERA5 reanalysis dataset: 40 years, 25km global grid, assimilated with observations. "Best available estimate of earth's atmospheric state"
- Potential gold mine for data-driven forecasting models:
 - Overcome model biases; use mixed-precision & GPUs for fast inference
 - Challenge: very high-dimensional state space (~150M 'pixels' for a single variable)

Office of

- Despite small-scale beginnings, deep learning has seen rapid progress in this area recently
- FourCastNet was first to forecast weather at resolution and skill comparable to production NWP models like IFS

FourCastNet, Pathak et al. (2022), 0.25°, ~1,000,000 Pixels, ViT+FNO

GNN, Keisler et al. (2022), 1°, 64,000 Pixels, Graph Neural Networks

Deuben & Bauer (2018), 6°, 60x30, 1.8K pixels, MLP

DLWP, Weyn et al. (2020). 2°, 16K pixels, Deep CNN on Cubesphere/(2021) ResNet

Weyn et al. (2019), 2.5° N.H only, 72x36, 2.6k pixels, ConvLSTM

WeatherBench, Rasp et al. (2020). 5.625°, 64x32, 2K pixels, CNN

- Now, multiple deep learning models approach or outperform forecast skill of traditional NWP
- Training recipes vary, but general theme is training large networks on a large chunk of ERA5
 - All (except GraphCast) are transformer-based
 - Large scale: some models require weeks of training on hundreds of GPUs

<u>FengWu</u>

Scaling FourCastNet on HPC systems

FourCastNet model: Adaptive FNO

Adaptive FNO architecture replaces expensive self-attention in vision transformers with token mixing via FFTs

 $N \times D \rightarrow H/p \times W/p \times D$

Guibas et al. "Adaptive Fourier Neural Operators: Efficient Token Mixing for Transformers." <u>arXiv:2111.13587</u> (ICLR 2022).

Models	Complexity (FLOPs)	Parameter Count
Self-Attention	$N^{2}d + 3Nd^{2}$	$3d^2$
AFNO (ours)	$Nd^2/k + Nd\log N$	$(1+4/k)d^2+4d$

N is set by resolution and patch size

FourCastNet: scaling for future

•**Resolution is key**: future efforts will leverage data at 10km, 5km, (eventually) 1km grids. How do we scale up?

Models	Complexity (FLOPs)	Parameter Count	
AFNO (ours)	$Nd^2/k + Nd\log N$	$(1+4/k)d^2+4d$	

	Current (25 km)	Intermediate (5 km)	Large (1 km)
N (p = 1)	1M	25M	625M
FFTs	720 x 1440 (d of them)	3600 x 7200 (d of them)	18k x 36k (d of them)
Matmul	[4d x d] * [d] (N of them)	[4d x d] * [d] (N of them)	[4d x d] * [d] (N of them)

•Different parallelization strategies needed to balance spatiotemporal resolution, model capacity, and hardware constraints

Beyond data parallel training

• Feature parallelization splitting channel dim, dense layers become distributed matrix multiplications

 Domain decomposition splitting height and width, FFT become distributed, LayerNorm needs to exchange stats

FourCastNet++: hybrid data-model parallel training

- Split MLP features along channel dimensions for model parallelism
- FFT-based spatial mixing operates on disjoint blocks, so embarrassingly parallel

FourCastNet++: hybrid data-model parallel training

- •Model parallelism across GPUs within a node: model instance
 - Exploit high-speed NVLink conneciton

•Data parallelism across model instances

- Gradient reduction during SGD happens across model instances
- Implement with separate communicators for model and data parallel comms

•Similar to state-of-the-art massive LLMs, e.g. <u>Megatron-LM</u>

Office of

Science

Scaling results

•Preliminary scaling study conducted on 25km resolution, with patch size=4

Scaling results across three HPC systems: 140.8 PFLOP/s on ~4000 GPUs

Scaling results

Preliminary scaling study conducted on 25km resolution, with patch size=4

Scaling results across three HPC systems: 140.8 PFLOP/s on ~4000 GPUs

Time to solution can be reduced to ~1hr or less

Looking forward: from weather to climate

From weather to climate

•Deep learning offers exciting new capabilities for medium-range weather forecasting

•What can we do as we move beyond that?

https://iri.columbia.edu/news/qa-subseasonal-prediction-project

From weather to climate

•Fast inference enables (very) large-scale ensembles

•Hindcasting with large ensembles can be done against both historical record as well as weather states from future climate scenarios: characterize uncertainty/likelihoods

Office of Science

From weather to climate

• Characterizing likelihood of extreme events is a major challenge of climate science

• We are now positioned to do so with AI+HPC:

Couple fast forecasting models with advanced climate analytics engines like TECA
 Answer questions like "how does the frequency of hurricanes look in 2050" with error bars

Other future directions

Computational scale

- train with 10km, 5km, 1km data
- All vertical levels for full 3D structure
- "Full" spatiotemporal model

Explicitly incorporating physics

- Conservation terms, better stability, etc.
- Coupling with climate models

Better ensembling

- Generative models, learned perturbations
- Uncertainty quantification

Direct data assimilation into DL model

