National Aeronautics and Space Administration

Sustainability: NASA Advanced Supercomputing Facility at Ames Research Center

Dr. Piyush Mehrotra Chief, NASA Advanced Supercomputing (NAS) Division piyush.mehrotra@nasa.gov

September 2023

NASA Advanced Supercomputing Division

www.nasa.gov

Supercomputing Facility @ Ames

3 Separate Data Centers

- Building N258, a traditional legacy data center, built in 1986. Home to Pleiades & Cabeus Computers, Data Storage, and offices for 200 NAS staff. Peak performance: 7.1 PFs; PUE: 1.36.
 - 4MW IT equipment, approximately 300 racks.
 - 1MW Cooling System (3+1 Chillers & Cooling Tower). Raised floor cooling with rear-door heat exchangers on compute racks.
 - 6MW capacity Rotary UPS for entire building load.
- R&D088, Prototype Modular Data Center Facility, built in 2016 & 2017. Home to Electra Computer. Peak performance 8.3 PFs; PUE: 1.04.
 - 1.4 MW 18 air cooled racks (HPE E-Cells) & 16 HPE Apollo 8600.
 - MDC1 uses filtered outside air & evaporative cooling over 81° F.
 - MDC2 uses water cooled heatsinks on processors process water cooled by dry air and evaporative cooler to 80° F.
- R&D099, Modular Supercomputing Facility, built in 2019. Home to Aitken Computer. Peak performance: 13.1 PFs; PUE: 1.044.
 - 2.1 MW 8 Apollo 8600 & 16 HPE Apollo 9000
 - Water cooled heatsinks on processors plus Apollo 9000 has water cooled circuit boards, eliminating fans – process water cooled by dry and evaporative cooler to 90° F.

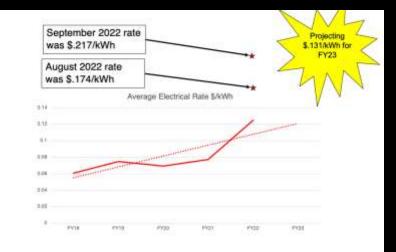
https://www.nas.nasa.gov

NASA Advanced Supercomputing Division

Sustainability at NAS

Sustainability objective at NAS is focused on both energy and water usage and is one of the factors in our design and procurement process.

- When running out of floor space and headroom in cooling, contracted a 3rd part survey in 2015, to determine the "best" approach for expanding the facility.
- In 2017, after successful completion of our prototype modules (R&D088 housing Electra), NAS committed all future expansion to a modular data center facility.
- Built a 1-acre cement platform with a potential draw of 30 MWs space for 12 compute modules and 1 data module.
- Aitken module in R&D099, with a power draw of 2.1 MW supports 90° F warm-water cooling. When compared to our traditional data center the evaporative coolers annually save:
 - Over 6 million kWh (~\$400K), and
 - Over 5.5 million gallons of water (~70K).
- Evaporative coolers are specified for their low water use. The coolers use water when day-time temperatures rise and are dry through the night and morning.
 - 90° F cooling water permits extended dry operation and uses less water, yielding a Water Usage Effectiveness (WUE) for the Module of 0.10L per kWh; US Department of Energy reports the WUE of an average data center is 1.8L per kWh.
 WUE is calculated as the (Annual Water Used) /(IT Energy Used).



Challenge: Utility Costs

• Utility costs are paid directly from program funding.

As utility costs increase, resources for the user community are reduced. Procurement of new IT equipment and infrastructure is delayed.

- NASA Ames receives hydroelectric power from the Western Area Power Association (WAPA) on Pacific Gas & Electric (PG&E) distribution lines.
 - Availability is very high and Public Safety Power Shutdowns are unlikely to affect our data centers.
- Highly variable energy rates are a challenge Energy pricing varies by month and are dependent on reservoir water storage levels.
 - In October 2022, before California's wettest season in 40 years, energy was \$0.305/kWh.
 - In June 2023, with reservoirs nearing 100%, energy was \$0.055/kWh.
- Water is also available without restrictions. However, during the drought, our site received a lot of high hardness well water that resulted in more frequent maintenance.

Software Efficiency

- NAS measures energy usage per job including breakdown on a per node basis.
 - Power imbalance in a node used to pinpoint potential performance issues.
 - Team is starting to examine energy-focused code optimization. Note, performance optimization indirectly reduces energy usage for a job.
- Energy usage per job, is used to chart power usage along with computational work by processor type and informs the decision process to retire aging hardware.

Questions?

piyush.mehrotra@nasa.gov

www.nas.nasa.gov