

Exceptional service in the national interest

Partially Saturated Flow through Deformable Porous Media

Troy Shilt

Engineering Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico

HPC User Forum, Loews Ventana Canyon Resort, Tucson, Arizona September 7, 2023

PROTECTED CRADA INFORMATION

This product contains Protected CRADA Information which was produced on MM/DD/YYY under CRADA No. 01672 and is not to be further disclosed for a period of five years from the date it was produced except as expressly provided for in the CRADA.

Further dissemination authorized to U.S. Government agencies only; other requests must be approved by the originating facility or higher DOE programmatic authority.

Controlled by: Sandia National Laboratories, Scott A. Roberts, sarober@sandia.gov

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

CUI//OPSEC/PROPIN

Motivation: multi-everything problems

CUI//OPSEC/PROPIN

FSI overview

Outputs at t_{n+1}, t_{n+2}, \dots

CDFEM: Noble, D.R., Newren, E.P. and Lechman, J.B. (2010), A conformal decomposition finite element method for modeling stationary fluid interface problems. Int. J. Numer. Meth. Fluids, 63: 725-742. <u>https://doi.org/10.1002/fld.2095</u>

cThruAMR: https://www.osti.gov/servlets/purl/1899670

CUI//OPSEC/PROPIN

FSI overview

Results: capillary flow

Capillary flow through a rigid foam

~32.8 million elements

Next steps: scale up

~395 million elements

CUI//OPSEC/PROPIN

Results: FSI

Rigid results

Rigid results

Elastic results

Next steps: apply to foam

CUI//OPSEC/PROPIN

Backup