
The Convergence of HPC, AI, and Quantum: 
Towards FugakuNEXT “made with Japan”

Satoshi Matsuoka
Director, Riken R-CCS

Hyperion HPC User’s Forum Paris
2025/10/7 1



2

⚫ Science of High Performance 
Computing (towards ‘Zettascale’)

⚫ Science of High Performance AI

⚫ Science of Quantum-HPC Hybrid 
Computing

⚫ Science by High Performance 
Computing

⚫ Science by High Performance AI (AI 
for Science) w/HPC Simulations

⚫ Science by Quantum-HPC Hybrid 
Computing

Riken R-CCS Strategy for Innovation by Computing
Future of Science ‘of’ and ‘by’ Computing

Silicon Photonics Optical 
Interface

Compute Centric Accelerator

3D SRAM

3D SRAM

3D SRAM

Strong Scaling / Compute 
Intensive Accelerator
Low Latency 3D SRAM

Many Core General Purpose CPU

3D SRAM

3D SRAM

3D SRAM

High Capacity DRAM

High Capacity DRAM

High Capacity DRAM

High resolution 
3D volumes from 

MRI

AI: Deep Neural 
Networks

+

Supercomputers
(Fugaku, Frontier, ABCI)

AI-powered 
Multi-compartment 

segmented 3D 
volumes

Immersive VR to 
visualize and 

annotate

Human expert 
segmentations

Verification

Mouse Brain 
Simulations

+
Supercomputers

(Fugaku, Frontier, ABCI)

Assimilate

Cellular Connectome with Modules and Cell Types Info

GROUP 1: AI-powered Extraction + Advancing Modeling in Neuro-simulations

GROUP 2: Image Reconstruction and Visualization

Collab with 
Duke U. and 

ORNL

GROUP 2: Advancing Understanding of Mouse Brain

Large-scale optical measurement of CS activity on cerebellar cortex

3D Volumetric 
Segmentation 
Powered by 
LLMs

5 micron
resolution =>
could 
replicate 
entire brain 
connectome 

Full digital 
twin of brains 
possible!

AuroraGPT
GPT Fugaku etc.

Ongoing DoE-MEXT AI-HPC Grand Challenge on Whole Brain Digital Twin

8k x 8k x 8k 
resolution

Actual problem solved by this new solver on whole system of Fugaku (7,312,896 parallel 
computation on 152,352 computer nodes (=609,408 MPI processes × 12 OpenMP threads) )

Dream has come true! minimum discretization: 12.5cm

city is included. All the structures are finely discretized!

Generalizable New Algorithm with Integration of HPC & AI for Earthquake Simulation 
to achieve effective 10 Exascale performance on Fugaku [Ichimura et. Al.]

(Towards Effective Zettascale)

• Requires 10 Exascale Performance due to resolution, multi-
physics requirements, etc.

Dream in earthquake simulation

x25 Equation-based modeling 
+ Data-science AI Surrogate

X42 hardware performance 
improvement from K to Fugaku

x1070 speedup, EFFECTIVE
10 EXASCALE PERFORMANCE

+
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Quantum Hybrid Computing Infrastructure for Riken TRIP
(R-CCS, RQC w/iTHEMS, AIP、Feasibility Study etc.)

World’s Largest Q-C Hybrid Computing Infrastructure

Tightly Coupled LAN
(For variational algorithms, 

low latency, high BW)

• Quantum BLAS
• Qiskit：IBM prog. Framework incl. transpiler
• Cirq：Google quantum prog. tool

• TensorFlow Quantum: Quantum ML
• Q#:Microsoft quantum prog. Tool.
• Qulacs：Osaka-u prog. Tool
• QunaSys simulation
• Covalent: Agnostiq、quantum HPC workflow
• PyQubo：converts combinatorial optimization 

problem into QUBO

Unified IL for QC/Hybrid

Quantum Alg.Quantum SW Stack

NISQ Alg

Quantum Machines (RQC, 
multiple vendors)

Quantum Computers (Physical & Simulated)

FPGA

Directly
observable

Multiple simulators on 
Fugaku (R-CCS/RQC)

Fugaku

Algorithmic Descriptions

Hybrid Variational 
Algorithms

Dedicated Simulator Machine
(classic)

Near-QC Hybrid
Programming＆API

Hybrid Programming API
＆Workflow Scheduler

Classical HPC Infrastructure

Dedicated 
Simulator 
Machine 

(Quantum Sim)

R-CCS DC

Also establish Quantum Hybrid 
Computing Division @ R-CCS 2023/4/1

AuroraGPT

Catalyst

Fugaku: Current until 2030~2031
FugakuNEXT: Feasibility Study 2022-2024, 

R&D 2025-2029, Deployment ~2029, Operations 2030-
‘Zettascale’ @ 40MW

Riken AI for Science FY 2024~
 including TRIP-AGIS and other projects

(TRIP-AGIS 2024~2031)

Hybrid JHPC-Quantum Infrastructure Project 
Deployment FY2023~2027



⚫ Earth Simulator (2002) – Main development by NEC(+Fujitsu), JAMSTEC ES center @ Yokohama hosting

⚫ #1 Top500 achieved via NEC’s aging SX design due to unprecedented machine size

⚫ K Computer (2011) – Main development by Fujitsu w/ Riken management office in Tokyo, later AICS as a 
small research & operation center was formed @ Kobe

⚫ Transitioned the JP community from classical vector to weak scaling massive parallel

⚫ #1 Top500 & 10 petaflops goal achieved by Fujitsu’s HW technologies

⚫ Fugaku (2020) – Main development by Fujitsu w/co-design management by Riken AICS dev office & 
application teams (more Riken involvement c.f. K-computer)

⚫ Transition to R-CCS w/R&D Riken involvement e.g., DL4Fugaku, Graph500/HPL-MxP, COVID prog, etc.

⚫ Some alignment to international standards, e.g. Arm64, RHEL, Lustre (FEFS), …

⚫ 50-100x performance gain achieved thru 25-40x HW x 2-3x SW (algorithms)

⚫ R-CCS now one of the top HPC & AI-HPC & QC-HPC centers of the world

⚫ FugakuNEXT (2029) – Main development by R-CCS, w/partnerships with CPU & GPU vendors

⚫ CPU & GPU – JP and US vendors

⚫ System, network, storage – co-investigation by 3 parties

⚫ System software, application & algorithms, operations, testbeds, etc. – by R-CCS and partners

Evolutions on National Lab-Vendor Relations
for Japanese Flagship Supercomputers
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FugakuNEXT (2029~2030) ‘Post-Exa’ Feasibility Study Design 
Evolution (Masaaki Kondo et. al.)

2023 Preliminary System target: 
More than 5-10x effective 

performance improvement in 
HPC applications 

and more than 50EFLOPS AI 
training performance

Scale-up
Network

CPU 

Accel. Accel. 

Accel. Accel.

CPU CPU 

Accel. Accel.

Accel. Accel.

CPU 

Scale-out Network

System Architecture for AI-for-Science
Computing Infrastructure

CPU GPU

Total Num. of Nodes >= 3400 Nodes

FP64 Vector FLOPS >= 48PFLOPS >= 3.0EFLOPS

FP16/BF16 AI FLOPS >= 1.5EFLOPS >= 150EFLOPS

FP8/INT8 AI (FL)OPS >= 3.0EFLOP >= 300E(FL)OPS

FP8 AI FLOPS (w/ sparsity) ー >= 600EFLOPS

Memory Size >= 10PiB >= 10PiB

Memory Bandwidth >= 7PB/s >= 800PB/s

Total power consumption < 40MW (compute node & storage）

2025 After two years of 
design work with 
multiple vendors

Effective Zettascale 
for AI and non-AI

(by 2029-2030 FugakuNEXT)

NVIDIA Corporation (Collaborator)
【SGL:Wells】

Architecture Research sub-G5
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⚫ Expected schedule

Expected Timeline of Fugaku-NEXT R&D and Future Plan

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036

Feasibility
Study

Preliminary
Design F-Next Operation

Detailed
Design

Deploy

Fugaku OperationFugaku

Fugaku-
NEXT

Feasibility
Study

Preliminary
Design

F-Next2

 Operation
Detailed
Design

DeployFugaku-
NEXT2

⚫ What’s going on in FY2024 for Fugaku-NEXT development

2024
Apr

May Jun Jul Aug Sep Oct Nov Dec
2025
Jan

Feb Mar Apr

Candidate Arch. FixFeasibility
Study

Architecture Study Report to MEXT

RIKEN Selected as main
project body Development 

PJ start?
MEXT

Committee evaluation Project preparation

Budget allocation request Budget approved?

Vendor bidding



FugakuNEXT Vendor Partner Announcement Aug. 22, 2025

Nikkei Newspaper Headline, 
NHK TV and many other 
national news media

We announced partnerships with Fujitsu and NVIDIA to develop 

FugakuNEXT by 2029 and deployment in 2030 as a Japanese national 

supercomputing project. The co-design development will involve the 

Monaka-X AI capable Arm enterprise CPU by Fujitsu and 2029 generation 

GPU by NVIDIA

Media

Web&Newspaper 39

TV Coverage 7

Total 46

News overages during 
2025/8/22-28



FUJITSU MONAKA-X (English translation of Fujitsu’s original slides)
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Japan’s state-of-the-art domestic CPU for AI

• World’s first implementation of 
low-precision matrix Arm SME 
in a server CPU, enabling low-
latency AI processing

• Top AI-CPU performance for 
standalone & w/GPU

• Expansion of AI acceleration 
frameworks and libraries

High-Perf. AI with NPU High Scalability for HPC Tight Integration with GPUs Power Efficiency & Security

• Ultra-many-core integration 
through next-generation 3D 
many-core architecture

• High-speed computation 
enabled by SIMD extensions

• Enhancement of high-
performance compilers and 
libraries for HPC

• High-speed AI training and 
GPU-optimized apps through 
adoption of high-bandwidth 
data transfer with GPUs

• Adoption of advanced 
semiconductor processes

• ultra-low-voltage operation 
control

• Confidential Computing

⚫ Climate change modeling
⚫ Development of new drag discovery 

methods
⚫ Advancement of financial service, etc.

⚫ Energy and space efficiency
⚫ Optimization for AI training and 

inference infrastructure
⚫ Advanced security, etc.

⚫ National security
⚫ Telecommunication infrastructure
⚫ Robotics, etc.

Datacenter Edge Computing

Follow-on to Fujitsu MONAKA 

Arm CPU 2026-7 (2nm)

2029



2025-6
Phase N-2
Grace-
Blackwell 
(AI4S/QHPC 
machines)

2027-8
Phase N-1
Monaka-
Rubin 
(tentative)

2029-30
FugakuNEXT
Phase N
Monaka-X – 
Feynman 
Variation?
(subject to R&D)



1. Fujitsu to develop CPUs, including Monaka and Monaka-X… in 
collaboration with GPU vendors, cultivate the AI-HPC 
hyperscaler market to establish a sustainable and profitable 
CPU business – “Made with Japan”

2. Modernize scientific applications, where Japan has lagged, by 
integrating GPU-enablement as well as "AI for Science," and 
transitioning to a modern DEV environment centered on IDEs, 
CI/CD/CB (Continuous Benchmarking), and AI-assisted coding. 
This will enable the societal implementation of software and 
research outcomes, significant impact in Japan and the world.

3. Establish a sustainable, long-term research and development 
framework for HPC-AI-Quantum computing centered at R-CCS, 
encompassing FugakuNEXT, FugakuNEXT-NEXT, and future 
projects, solidifying our position as a world-leading HPC lab.

4. To successfully build FugakuNEXT (lowest priority? :-).

Project Objectives for FugakuNEXT (in order of priority)



FugakuNEXT R&D Organizations
⚫ Riken R-CCS to assume leadership of the project, in collaboration with the GPU & CPU 

vendors Fujitsu and NVIDIA, as well as international leadership HPC/AI organizations

⚫ The Next-generation platform division headed by M. Kondo to assume day-to-day 
development activities, but the entire R-CCS will participate in the R&D

⚫ R&D will be open and sustainable (unlike previous projects)

10

Riken R-CCS
＋

GPU/CPU 
Vendors

DoE Labs

Univ. & National Labs

User Community

DOE-MEXT MoU on HPC（2024/4/9）

DoE-MEXT workshops（quarterly since 2023）

Town Hall Meetings
& other user 

engagements on 
phase 2/3 platforms

Open source community 
e.g. HPSF

Participation by US 
& JP vendors from 
the onset (FS)

HPCI Centers
w/Riken partnership

Other vendor 
contractors

EuroHPC 
Centers
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⚫ Initial release (V 1.0) August 5, 2024,

⚫ Enhanced version (V1.1) released Nov 17, 2024

⚫ Added industry applications and AI frameworks

⚫ Started providing the following two environments 
targeting AWS Graviton CPUs (August 5, 2024)

⚫ Now v. 1.2 and continue to improve

⚫ Will provide x86/GPU environments in the future

Virtual Fugaku: Vendor-independent, general-purpose, high-functionality
HPC software stack for Clouds, Fugaku/FugakuNEXT and Other SCs

Virtual FUGAKU

Satellite Fugaku

Real FUGAKU

SVE & scaling optimized R-CCS & 
User applications, OSS/ISV 

applications

Fugaku Development & Execution 
Environment (HPC&AI SW Stack e.g, 

compilers, libraries, frameworks)

SVE & scaling optimized R-CCS & 
User applications, OSS/ISV 

applications

Fugaku Development & Execution 
Environment (HPC&AI SW Stack e.g, 

compilers, libraries, frameworks)

Virtual             FUGAKU

Testbed for Virtual Fugaku on 
AWS Graviton3/3E (Arm+SVE

CPU)  provided to Fugaku
users by R-CCS

SVE & scaling optimized R-CCS & 
User applications, OSS/ISV 

applications

Fugaku Development & Execution 
Environment (HPC&AI SW Stack e.g, 

compilers, libraries, frameworks)

Virtual             FUGAKU

Private environment on AWS 
Graviton3/3E (Arm+SVE CPU) 

Private Fugaku

Define 
software 

environment 
on Fugaku by 

the 
spack.yaml

Distribute 
as the 

container

Other 
supercomputers

FugakuOnDemand provides 
the same usability.

② ‘Private Fugaku’
Singularity container distro 
for AWS users

① ‘Satellite Fugaku’
Certification environment for 
Fugaku users (on AWS)

⚫ Base on Amazon EC2 Hpc7g instance

⚫ 1 Graviton3E login node + 8 Graviton3E compute nodes

Configuration of Satellite Fugaku

AWS
Parallel Cluster

富岳

SINET

Login and head 
head node Compute 

nodes
slurm

mount mount

SPACK/Singularity

Virtual Fugaku V.1 softstack

Spack

User PC
/Fugaku

Ondemnad

Login
(x86)
Login
(x86)
Login
(x86)
Login
(x86)
Login
(x86)

UM
(LDAP/NFS)

User
data

SSH

NFS/LDAP

Apps (GENGESIS…)

Shared Filesystem (Luster, NFS)

1 login node: Graviton3E, 64 vCPU, 128GB memory, RHEL8.10
8 Compute nodes: Graviron3E, 64 vCPU, 128 GB memory, RHEL8.10

Internet

1

https://ondemand.fugaku.r-ccs.riken.jp/
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Packages in Virtual Fugaku 1.x

Name Description Vesrion Spack Package

GENESIS molecular dynamics 2.1.3 genesis

Gnuplot graphing utility 6.0.0 gnuplot

GROMACS molecular dynamics 2024.2 gromacs

GNU Scientific Library 
(GSL)

numerical library 2.7.1 gsl

Julia programming language 1.10.2 julia

LAMMPS molecular dynamics
20230802

.3

lammps

Metis graph partitioner 5.1.0 metis

Open Babel chemical toolbox 3.1.1 openbabel

OpenFoam CFD 2312 openfoam

Paraview visualization 5.12.1 paraview

Parmetis parallel graph partitioner 4.0.3 Parmetis

Atomic Simulation 
Environment

atomistic simulation 3.21.1 py-ase

Matplotlib Visualization 3.9.0 py-matplotlib

MPI for Python Python bindings for MPI 3.1.6 py-mpi4py

NumPy array computing in Python 1.26.4 py-numpy

Name Description Vesrion Spack Package

pandas
data analysis and 
manipulation

2.1.4 py-pandas

scikit-learn
machine learning and data 
mining

1.5.0 py-scikit-
learn

SciPy
Fundamental algorithms for 
scientific computing

1.13.1 py-scipy

TOML Python library for TOML 0.10.2 py-toml

Quantum Espresso ab initio calculation
7.3.1 quantum-

espresso

SCALE weather and climate 5.4.4 scale

tmux terminal multiplexer 3.4 Tmux

CP2K quantum chemistry 2024.1 cp2k

CPMD ab-initio molecular dynamics 4.3 cpmd

FrontISTR Large-Scale Parallel FEM 5.3 frontistr

AutoDock-Vina molecular docking 1.2.3 autodock-vina

PyTorch
Tensors and Dynamic neural 
networks

2.1.1 py-torch

TensorFlow machine learning framework 2.14.1 py-tensorflow

⚫ Virtual Fugaku 1.x includes the following software packages along 
with their many dependencies.

⚫ Selected from the most frequently used Spack packages on real Fugaku since July, 2022.

⚫ Built with GCC 14.1.0 and EFA-enabled OpenMPI 4.1.6.
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⚫ Development Related

⚫ Expansion of included packages and improved packaging efficiency

⚫ ISV addition trial: STAR-CCM (Siemens under consideration)

⚫ Automation through CI/CD/CT process (already started)

⚫ Graviton4 evaluation

⚫ Simplified introduction for Private Fugaku

⚫ Trial of Spack Build Cache

⚫ Utilization of Amazon Machine Images (AMI) and other AWS frameworks

⚫ Application to R-CCS planned systems → Inheritance as a standard stack for Fugaku NEXT, etc.

⚫ Trial deployment to other architectures such as x86 → Application to RIKEN AI4S, RIKEN JHPC-Quantum 
supercomputers, etc., and provision to other HPCI centers

⚫ Deployment in Phase 1, Phase 2

⚫ Initiatives for community building and cultivation

⚫ Strategic participation in the HPC Software Foundation => Collaboration with DoE E4S HPC Stack

⚫ Community building through the SPACK community and HPSF

⚫ Participation in various events (APAN59 3/6 Cloud WG, SCAsia2025 AWS tutorial, introduction at 2025 ACM 
ASEAN School)

⚫ Breaking away from vendor dependence => As a base for the next-generation Fugaku system 
software development

Virtual Fugaku as a basis of FugakuNEXT Software



Riken Leadership in FugakuNEXT Applications
② AI-based Code 

Modernization
Coding AI to generate & Port 

Legacy HPC Codes

14

① Code Porting & 
Evaluation

Code Porting Support on Phase 
2 machines w/CI/CD/CB

③ FugakuNEXT Phase 
2 Proxy

As targets for code dev & 
porting, onto Phase 3 and 4

FugakuNEXT Partnership Program for Early Access to Development

⚫ Collaboration w/DoE and 
Vendors to establish common 
CI/CD/CB

⚫ Early participation of wide-
ranging apps community

⚫ AI already being incorporated 
into Fugaku Services

⚫ AI coding support to port, tune, 
incorporate new algorithms

⚫ Phased deployment of N-2, N-1, 
… platforms

⚫ Utilize production platforms 
(AI4S, Quantum-HPC) to test 
system software and apps



Phased Dev&Deployment Towards FugakuNEXT

Riken-lead continuous development of system software and apps 
utilizing Fugaku+AI4S+JHPC-Q & preproduction machines

• Phase1 (2025/4) – AI4S phase1, A set of small cluster of a variety of 
GPUs (total 200GPU), First platform towards Virtual Fugaku based SW

• Phase2 (End of FY2025) – AI4S phase 2 + JHPC-Q, Total 2130 NVIDIA 
GB200NVL4 GPUs in APU config + Virtual Fugaku + DoE E4S + AI + 
Hybrid QC Software Stack and CI/CD/CB Platform

• Phase 3 (FY2027) – Dedicated mid-sized cluster consisting of 
GPU/APU one generation prior to FugakuNEXT, Riken SysSoft + 
Application CI/CD/CB + operations rehearsal

• Phase 4 (FY2029-30) FugakuNEXT deployment & operations

New 
Cluster 
Room

New 
Datacenter

Current
R-CCS
Cloud



BenchPark: DoE and RIKEN Collaboration on CI / CD / CB [Olga 
Pierce @ LLNL, Jens Domke @ R-CCS, …]
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● Collaborative Continuous Benchmarking

● Designed to minimize human effort by maximizing
reuse and supporting easy collaboration between
HPC centers, vendors, and researchers

● Components: Source code, Build instr., Inputs,
Run instructions, Exp. evaluation, and CI testing

● Security considerations: Hubcast for mirroring code,
Jacamar for GiLab runners with authorized account

● Current status:

● Know systems (10): Fugaku, CSC LUMI, JSC Juwels,
CSCS Piz Daint, various LLNL (ElCapitan) and LANL

● 20 HPC benchmarks; incl. 3 from
R-CCS (QWS, GENESIS, SALMON)

Paper:  dl.acm.org/doi/10.1145/3624062.3624135 

Repo:   github.com/LLNL/benchpark 

https://dl.acm.org/doi/10.1145/3624062.3624135
https://dl.acm.org/doi/10.1145/3624062.3624135
https://dl.acm.org/doi/10.1145/3624062.3624135
https://github.com/LLNL/benchpark
https://github.com/LLNL/benchpark
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Not much 
advance 

BW/W c.f. 
Fugaku 

(~50GB/W)

Future HBM 
Roadmap 
not very 

favorable
↓

Innovations 
in memory



18Nov/19/2021

Innovations will not be driven by the commercial AI community, 
but rather the HPC(/AI) community has to lead

(Convergence)



Jens Domke

What about Dense Linear Algebra?

19

Precision Depending Analysis – what and how matrix engines 

provide good ROI relative to their silicon occupancy?

⚫ Energy = compute (multipliers, volume) + data movement 

(between units, surface)

⚫ Low precision – low surface:volume, optimize to minimize 

data movement, matrix engines to minimize wire distance

⚫ High precision – high surface:volume, data transfer less 

problem, performance & energy gain small, dark silicon of 

unused multipliers wasteful, wide vectors sufficient.

⚫ 4~16 bit apps: Deep Learning/AI training

⚫ 19~ (TF32) ~ 32 bit apps: DL/AI, molecular dynamics, higher 

order methods (mixed precision)

⚫ 64 bit apps: first-principle material science eg DFT  => 

Emulation of “64 bit” apps with “Ozaki Scheme II” => with 

1/20 slowdown we expect effective 10 Exaflops from 200 

INT8 ExaOps “Zettascale” AI machine (20x Fugaku)

Low precision 

MM

Low volume 

(compute) : 

surface 

(comm) ratio

Matrix units 

help to reduce 

data transfer 

energy

Very wire 

energy 

efficient

High precision 

MM

high volume 

(compute) : 

surface (comm) 

ratio

Vector units may 

be sufficient as 

benefit of matrix 

may be low

NOT very energy 

efficient cf 

vectors

>>



One Idea for Using Mixed Precision Goes Something 

Like This…

• Exploit lower arithmetic as much as possible.

▪ Especially for the bulk of the computation

• Correct or update the solution with selective use of 

higher floating point arithmetic to provide a “refined 

results” (more accurate).

• Intuitively: 

▪ Compute a 32 bit result, 

▪ Calculate a correction to 32 bit result using selected higher 

precision (64 bit) and,

▪ Perform the update of the 32 bit results with the correction 

using high precision (64 bit). 

Slides courtesy Jack Dongarra, U-Tennessee



Iterative refinement for dense systems, Ax = b, can work this way.
L U = lu(A)                lower precision  O(n3)
x = U\(L\b)               lower precision  O(n2)
r = b – Ax (with original A)             FP64 precision  O(n2)

WHILE || r || not small enough
1. find a correction “z” to adjust x that satisfy Az=r
    solving Az=r could be done by either:

➢ GMRes preconditioned by the LU to solve Az=r Iterative Refinement GMRes lower precision  O(n2)
2. x = x + z              FP64 precision  O(n1)
3. r = b – Ax (with original A)           FP64 precision  O(n2)

END

Idea: use low precision to compute the expensive flops (LU O(n3)) and then iteratively 
refine (O(n2)) the solution in order to achieve the FP64 arithmetic

➢ Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt results when using DP fl pt.

➢ It can be shown that using this approach we can compute the solution to 64-bit floating point precision.

➢ Need the original matrix to compute residual (r) and matrix cannot be too badly conditioned

Leveraging Mixed Precision for Linear Algebra

Requires extra storage, total is 1.5 times normal;
O(n3) work is done in lower precision
O(n2) work is done in high precision
Problems if the matrix is ill-conditioned

Higham and Carson showed can solve the inner problem with iterative method and not infect the solution with the conditioning of the original matrix.

E. Carson & N. Higham, “Accelerating the Solution of Linear 

Systems by Iterative Refinement in Three Precisions SIAM J. 

Sci. Comput., 40(2), A817–A847.

J. Langou, et al., Exploiting the Performance of 32 bit fl-pt 

Arithmetic in Obtaining 64 bit Accuracy, in: Proc. of SC06

Originally motivated by the Sony PlayStation

SP peak 205 Gflop/s, DP peak 15 Gflop/s

Slides courtesy Jack Dongarra, U-Tennessee



HPL-MxP Top 10 for June 2025
Rank Site Computer Cores

HPL Rmax 

(Eflop/s)

TOP500 

Rank

HPL-MxP 

(Eflop/s)
Speedup

1
DOE/NNSA/ANL

USA

El Capitan, HPE Cray 255a, AMD 4th Gen EPYC 

24C 1.8 GHz, AMD Instinct MI300A, Slingshot-11
11,039,616 1.742 1 16.7 9.6

2
DOE/SC/ANL

USA

Aurora, HPE Cray EX, Intel Max 9470 52C, 2.4 

GHz, Intel GPU MAX, Slingshot-11
8,159,232 1.012 3 11.6 11.5

3
DOE/SC/ORNL

USA

Frontier, HPE Cray EX235a, AMD Zen-3 (Milan) 

64C 2GHz, AMD MI250X, Slingshot-11
8,560,640 1.353 2 11.4 8.4

4
AIST

Japan

ABCI 3.0, HPE Cray XD670, Xeon Platinum 8558 

48C 2.1GHz, NVIDIA H200, Infiniband NDR200
479,232 0.145 15 2.36 16.3

5
EuroHPC/CSC

Finland

LUMI, HPE Cray EX235a, AMD Zen-3 (Milan) 64C 

2GHz, AMD MI250X, Slingshot-11
2,752,704 0.380 8 2.35 6.2

6
RIKEN Center for 

Comput. Science, Japan
Fugaku, Fujitsu A64FX 48C 2.2GHz, Tofu D 7,630,848 0.442 6 2.00 4.5

7
EuroHPC/CINECA

Italy

Leonardo, BullSequana XH2000, Xeon 8358 32C 

2.6GHz, NVIDIA A100, QR NVIDIA HDR100 IB 1,824,768 0.241 9 1.80 7.5

8
CII, Institute of Science

Japan

TSUBAME 4, HPE Cray XD665, AMD EPYC 9654 

96C 2.4GHz, NVIDIA H100, Mellanox NDR200
172,800 0.035 47 0.64 16.2

9
NVIDIA

USA

Selene, DGX SuperPOD, AMD EPYC 7742 64C 

2.25 GHz, Mellanox HDR, NVIDIA A100
555,520 0.063 23 0.63 9.9

10
DOE/SC/LBNL/NERSC

USA

Perlmutter, HPE Cray EX235n, AMD EPYC 7763 

64C 2.45 GHz, Slingshot-10, NVIDIA A100
761,856 0.079 19 0.59 7.5

Source: Top500 Presentation, June 
2025, Erich Strohmaier



(New!) Ozaki Scheme II
Ultra-fast emulation of matrix multiplication

using INT8 Tensor Cores

Advancing AI-oriented architectures 

toward the evolution of 

traditional scientific computing

Katsuhisa

Ozaki

Yuki

Uchino

Toshiyuki

Imamura



𝐶 += diag(𝜇) × {𝐴(𝑖)𝑇
𝐵 𝑗 }  × diag(𝜈) × 2− 𝑖+𝑗−2 𝑑

C

Re-scale the row/column- 

wise alignment of the 

exponent part and 

accumulate onto C

𝐶 = 𝐴𝑇𝐵 = diag(𝜇) ∗ 𝐴; 𝑇 ∗ ( 𝑑 𝑇⨂𝐼)( 𝑑 ⨂𝐼) ∗ 𝐵; ∗ diag(𝜈)

= ෍
𝑖𝑗

diag(𝜇) 𝐴 𝑖 𝑇
2− 𝑖−1 𝑑2− 𝑗−1 𝑑𝐵 𝑗 diag(𝜈)

Ozaki-scheme:
• Error-free transformation of 𝐴𝐵

     for 𝐴 ∈ ℝ𝑘×𝑚 & 𝐵 ∈ ℝ𝑘×𝑛.

• Simply, split 𝐴 & 𝐵 into sub-matrices such that 
𝐴 = 𝐴 1 + ⋯ + 𝐴 𝒔𝑨−1 + 𝐴 𝒔𝑨 ,

𝐵 = 𝐵 1 + ⋯ + 𝐵 𝒔𝑩−1 + 𝐵 𝒔𝑩 ,

𝐴(𝑖)𝑇
𝐵(𝑗) = fl 𝐴 𝑖 𝑇

𝐵 𝑗 , for ∀𝑖, 𝑗 

max
𝑝

log2 |𝐴(𝑖)
𝑝𝑞

| ≥ max
𝑝

log2 𝐴 𝑖+1
𝑝𝑞 + 𝑑, for ∀𝑖, 𝑞

max
𝑝

log2 |𝐵(𝑗)
𝑝𝑞

| ≥ max
𝑝

log2 𝐵 𝑗+1
𝑝𝑞 + 𝑑, for ∀𝑗, 𝑞

2𝑑 + log2𝑘 ≤ bitsizeof(Acc) 

• Then, 𝐴𝑇𝐵 = σ𝑖=1
𝒔𝑨 σ𝑗=1

𝒔𝑩 𝐴 𝑖 𝑻
𝐵 𝑗 .

𝐴𝑇 = diag 𝜇 ∗ 𝐴 1 ; 𝐴 2 ; 𝐴 3 …
𝑇

2−0𝑑, 2−𝑑, 2−2𝑑, …
𝑇

⨂𝐼

𝐵 = 2−0𝑑, 2−𝑑, 2−2𝑑, … ⨂𝐼 𝐵 1 ; 𝐵 2 ; 𝐵 3 … ∗ diag 𝜈

INT8GEMM by TensorCores/MatrixEngines



Current results on a GH200
 ozGEMM vs gemmEx<FP64>
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256 512 1024 2048 4096 8192 16384 32768

7 8 9 DGEMM 7 8 9

GH200 FP64: 67TFLOPS

  INT8: 1979TOPS

   32x

Algorithm A. Algorithm B.

GB200 FP64: 90TFLOPS

  INT8: 10000TOPS

   111x

~90TF
GB200
FP64GEMM

~250TF
GB200
ozGEMM

≈

Matrix dimension: M=N=K

[TFLOPS]



Throughput test (FP64 emulation) 26

RTX4090 GH200 Rubin 300 Ultra
(estimate by S. Matsuoka)

DGEMM (cuBLAS) 0.62 
TFLOPS

60.9 
TFLOPS

??? 100+
TFLOPS per 4 GPU die package

extrapolation from Blackwell

Ozaki Scheme I 5.84
TFLOPS

34.5
TFLOPS

Ozaki Scheme II (new) 7.4–9.8 
TFLOPS

66.9–80.2
TFLOPS

800~1300
TFLOPS per 4 GPU die package

Code is available at RIKEN’s GitHub presented by Dr. Uchino

https://github.com/RIKEN-RCCS/accelerator_for_ozIMMU

https://github.com/RIKEN-RCCS/GEMMul8

Consumer-grade GPU → RTX4090: INT8TC: FP64      = 512:1

DATA Center GPU       → GH200:     INT8TC: FP64TC = 29.5:1

DATA Center GPU       → B200:        INT8TC: FP64TC = 112.5:1
With Ozaki Scheme II, 

emulation outperforms native FP64 

even on data center GPUs.

https://github.com/RIKEN-RCCS/accelerator_for_ozIMMU
https://github.com/RIKEN-RCCS/accelerator_for_ozIMMU
https://github.com/RIKEN-RCCS/accelerator_for_ozIMMU
https://github.com/RIKEN-RCCS/GEMMul8
https://github.com/RIKEN-RCCS/GEMMul8
https://github.com/RIKEN-RCCS/GEMMul8


Acceleration of Quantum Chemistry using 
Combinatios of Emulation (Ozaki) & Mixed 

Precision utilizing AI-Centric GPUs 

27
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Use of INT8 Tensor Cores in explicit voxel 
finite-element wave simulation

• Developed an algorithm that guarantees FP64-equivalent accuracy even when using integer 
operations within the explicit method, and accelerated simulations with INT8 Tensor Cores

• Convert element matrix-vector product 𝑲𝑒𝒖𝑒 into products of integer-component matrix and FP64 vectors:

• 𝑲𝑒𝒖𝑒 =
𝜅 𝑑𝑠

256
𝑲𝑒

𝑖𝑛𝑡 ഥ𝒖𝑒 +
𝑑𝑠

3𝐺
𝒖𝑒 [red indicate integer matrix/vector, black indicate FP64 matrix/vector]

• Convert the main computation part 𝑲𝑒
𝑖𝑛𝑡 ഥ𝒖𝑒 to 𝑀 sets of integer-valued matrix-vector products  

𝑲𝑒
𝑖𝑛𝑡 ഥ𝒖𝑒int(𝑖) and compute with INT8 Tensor Cores (𝑠, 𝑎 are FP64 coefficients):

• 𝑲𝑒
𝑖𝑛𝑡 ഥ𝒖𝑒 = 𝑠 σ𝑖=1

𝑀 𝑎𝑖𝑲𝑒
𝑖𝑛𝑡 ഥ𝒖𝑒int(𝑖)

• Furthermore, data conversion cost is reduced by hierarchical data conversion (ഥ𝒖𝑒  →  ഥ𝒖𝑒int64(𝑖) → ഥ𝒖𝑒int8(𝑖,𝑗))

• FP64-equivalent accuracy obtained by use of 𝑀 = 8 INT8 stages

29
Tsuyoshi Ichimura, Kohei Fujita, Muneo Hori, Maddegedara Lalith: Low-ordered Orthogonal Voxel Finite Element with INT8 Tensor 
Cores for GPU-based Explicit Elastic Wave Propagation Analysis, International Conference on Computational Science 2024



Use of INT8 Tensor Cores in explicit 
voxel finite-element wave simulation

• Compare the time required to obtain equivalent accuracy@A100 PCIe GPU
• Use of INT8 Tensor Cores lead to 43.3/9.62 = 4.5-fold speedup in sparse matrix-vector 

product part and 3.4-fold speedup of total simulation while attaining FP64-equivalent 
accuracy

• By use of orthogonal voxel elements with less numerical dispersion in the INT8 Tensor 
Core accelerated simulation, we can use larger elements compared to standard voxel 
finite-element, enabling a total of 17-fold speedup

Orthogonal 
voxel FEM 

30

Standard voxel FEM 

Tsuyoshi Ichimura, Kohei Fujita, Muneo Hori, Maddegedara Lalith: Low-ordered Orthogonal Voxel 
Finite Element with INT8 Tensor Cores for GPU-based Explicit Elastic Wave Propagation Analysis, 
International Conference on Computational Science 2024



Integer-arithmetic based sparse linear solver
T. Iwashita (KU, HU, RIKEN), K. Suzuki(KU, HU), T. Fukaya(KU, HU)

KU: Kyoto Univ., HU: Hokkaido Univ.

An integer-arithmetic based AMG-FGMRES solver was developed.

• The accuracy of the solution vector is identical to the 
FP64-based solver.

• Most of computations are performed using integer 
arithmetic instructions.

Approach
• Iterative refinement method

• Outer solver: only checking the accuracy of solution
• Inner solver: an integer arithmetic iterative solver

• Initial scaling of the linear system to be solved
• Division of coefficient matrix to matrices with a different range
• Shift operations for avoiding overflow and underflow

• Automatic shift amount setting
• Maximize the accuracy using the property of GMRES

atmosmodd from SuiteSparse

On convergence rate is 
comparable to FP64, FP32 solvers.

The time to solution is reduced to 
2/3 of the FP64 based solver on CPU 
(GPU version forthcoming)

Papers

K. Suzuki et al., ACM TOMS, 2025
(https://doi.org/10.1145/3704726)

T. Iwashita et al., ScalA20, 2020
(https://doi.org/10.1109/ScalA51936.2020.00006)

https://doi.org/10.1145/3704726
https://doi.org/10.1109/ScalA51936.2020.00006


Motivation:

●Historically, easy choice: FP32 enough (→ speedup & lower bandwidth 
requirements), or is FP64 necessary?

● Some numerical methods more amenable to systematic reduction of precision
(usually guided by robust mathematical foundation for maintaining accuracy)

●AI induced HW trends:

● low-precision units (TF32, BF16, fp16, posits, …) for vector and tensor operations

● FP64 capabilities stagnate or are reduced

➔ R&D Question: how to lower precision under lack of mathematical foundation?

    Collaborators: Faveo Hoerold, Ivan Ivanov, Akash Dhruv, William Moses,
                                     Anshu Dubey, Mohamed Wahib, Jens Domke

RAPTOR: Practical Numerical Profiling of Scientific Apps
[Domke, Wahib, et. al. SC25]

32



Towards 100x or ‘Zettascale’ HPC Performance 
for FugakuNEXT

33

⚫ Simulation Workloads ~100x

⚫ Raw HW Performance Gain: 10x ~ 20x

⚫ Mixed precision or emulation: 2x ~ 8x

⚫ Surrogates / PINN: 10x ~ 25x

⚫ Total: 100x, some apps 200x ~ 1000x or more over Fugaku 
=> 100x or even ‘Zettascale’

⚫ Raw AI HW performance in Zettascale (> 100x)

⚫ Low precision, sparsity, new models…

⚫ Expect ‘Zettascale’ AI performance

⚫ With 40MW Limit (not GigaW e.g., hyperscalars)



34

Overview of our QC-supercomputer hybrid platform

Quantinuum > 20
qubits Feb, 2025

Riken RQC ‘A’ 
QC 64 qubits

2130 GPUs
GB200 NVL4
AI+QCHPC

IBM System 2
“IBM Kobe”
156 qubits
June 2025

Quantiniumm
H1-2
20 qubits => 56 qubits

N2 : Bond breaking on large basis set 

58 qubits

45 qubits

Fe2S2: Precision many-body physics

Fe4S4: Pushing hardware capabilities

77 qubits



⚫ 6 Keynotes – HPC,
AI, QC-HPC

⚫ 28 Workshops

⚫ 20 Tutorials

⚫ 101 full papers 
submitted

⚫ 20 BoFs submitted

⚫ Over 10 Invited 
Tracks

⚫ ~100 International 
Exhibitors

⚫ ~3000 participants
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