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Riken R-CCS Strategy for Innovation by Computing ® |
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Evolutions on National Lab-Vendor Relations om

for Japanese Flagship Supercomputers
Earth Simulator (2002) - Main development by NEC(+Fujitsu), JAMSTEC ES center @ Y¢ |

o
RIK=N

e #1 Top500 achieved via NEC’s aging SX design due to unprecedented machine size

K Computer (2011) - Main development by Fujitsu w/ Riken management office in Tokyo, later AICS as a
small research & operation center was formed @ Kobe

e Transitioned the JP community from classical vector to weak scaling massive parallel

e #1 Top500 & 10 petaflops goal achieved by Fujitsu’s HW technologies

Fugaku (2020) - Main development by Fujitsu w/co-design management by Riken AICS dev office &
application teams (more Riken involvement c.f. K-computer)

e Transition to R-CCS w/R&D Riken involvement e.g., DL4Fugaku, Graph500/HPL-MxP, COVID prog, etc.
e Some alignment to international standards, e.g. Arm64, RHEL, Lustre (FEFS), -
e 50-100x performance gain achieved thru 25-40x HW x 2-3x SW (algorithms)

e R-CCS now one of the top HPC & AI-HPC & QC-HPC centers of the world
FugakuNEXT (2029) - Main development by R-CCS, w/partnerships with CPU & GPU vendors
e CPU & GPU - JP and US vendors

o System, network, storage — co-investigation by 3 parties

o System software, application & algorithms, operations, testbeds, etc. — by R-CCS and partners



FugakuNEXT (2029~2030) ‘Post-Exa’ Feasibility Study Design
Evolution (Masaaki Kondo et al.) 2025 After two years of

System Architecture for Al-for-Science

Computing Infrastructure

| Scale-out Network
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CPU CPU

Hewlett Packard
\ Enterprise

@ design work with
multiple vendors

CPU GPU

Total Num. of Nodes

>= 3400 Nodes

FP64 Vector FLOPS

>= 48PFLOPS >= 3.0EFLOPS

FP16/BF16 Al FLOPS

>= 1.5EFLOPS >= 150EFLOPS

FP8/INT8 AI (FL)OPS

>= 3.0EFLOP >= 300E(FL)OPS

FP8 AI FLOPS (w/ sparsity)

— >= 600EFLOPS

Memory Size

>= 10PiB >= 10PiB

Memory Bandwidth

>= 7PB/s >= 800PB/s

2023 Preliminary System target:
More than 5-10x effective
performance improvement in
HPC applications
and more than 50EFLOPS AI
training performance

Total power consumption

< 40MW (compute node & storage)

Effective Zettascale

for AI and non-AIl
(by 2029-2030 FugakuNEXT)




Expected Timeline of Fugaku-NEXT R&D and Future Plan

e Expected schedule

| 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | 2034 | 2035 | 2036

Fugaku Fugaku Operation

Fugaku- Feasibility Preliminary Detailed ) :
N?EXT Study Design Design Deploy F-Next Operation

Fugaku- Feasibility Preliminary Detailed Deploy F-Next?
NEXT? Study Design Design Operation

e What’'s going on in FY2024 for Fugaku-NEXT development

2024

Fegs&téiyty ArcHitecture Study Candidate Arch. Fix Report to MEXT
RIKEN Selected as main Committee evaluation Prpject preparation i 7//\47 t
] evelopmen
project body * Vendor bidding * PJ start?
MEXT

Budget allocation request Budget approved?



pas Bl FugakuNEXT Vendor Partner Announcement Aug. 22, 2025

We announced partnerships with Fujitsu and NVIDIA to develop
FugakuNEXT by 2029 and deployment in 2030 as a Japanese national o
supercomputing project. The co-design development will involve the

Monaka-X Al capable Arm enterprise CPU by Fujitsu and 2029 generation

GPU by NVIDIA
R e Nikkei Newspaper Headline,

»
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. "’ NHK TV and many other “ |
national news media
Media News overages during .
Web&Newspaper | 39 | 2025/8/22-28 »
TV Coverage 7
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@ om FUJITSU MONAKA-X (English translation of Fujitsu’s original slides)

RIKEH R'ccs

w- i <
FUJITSU-MONAKA-X(1.40m) s ort 2026 7 oy FUJITSU

Japan’s state-of-the-art domestic CPU for AI 2029

High-Perf. AI with NPU High Scalability for HPC Tight Integration with GPUs  Power Efficiency & Security

« World'’s first implementation of < Ultra-many-core integration « High-speed Al training and « Adoption of advanced
low-precision matrix Arm SME through next-generation 3D GPU-optimized apps through semiconductor processes
in a server CPU, enabling low- many-core architecture adoption of high-bandwidth  ultra-low-voltage operation

latency Al processing « High-speed computation data transfer with GPUs control
i

« Top AI-CPU performance for enabled by SIMD extensions L AN - Confidential Computing
standalone & w/GPU « Enhancement of high- PIZ N | Y
+ Expansion of Al acceleration performance compilers and i nn

frameworks and libraries libraries for HPC

N " Ny

@ HPC @) Datacenter 'Edge Computing

Big data processing Scalability for Cloud Compuiting Real-Time and Edge AT

® Climate change modeling ® Energy and space efficiency ® National security

® Development of new drag discovery ® Optimization for Al training and ® Telecommunication infrastructure
methods inference infrastructure ® Robotics, etc.

® Advancement of financial service, etc. ® Advanced security, etc.

© 2025 Fujitsu Limited




NVIDIA Paves Road to Gigawatt Al Factories
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R Project Objectives for FugakuNEXT (in order of priority) QI

1. Fujitsu to develop CPUs, including Monaka and Monaka-X::- in
collaboration with GPU vendors, cultivate the AI-HPC
hyperscaler market to establish a sustainable and profitable
CPU business - “Made with Japan”

2. Modernize scientific applications, where Japan has lagged, by
integrating GPU-enablement as well as "Al for Science," and
transitioning to a modern DEV environment centered on IDEs,
CI/CD/CB (Continuous Benchmarking), and AlI-assisted coding.
This will enable the societal implementation of software and
research outcomes, significant impact in Japan and the world.

3. Establish a sustainable, long-term research and development
framework for HPC-AI-Quantum computing centered at R-CCS,
encompassing FugakuNEXT, FugakuNEXT-NEXT, and future
projects, solidifying our position as a world-leading HPC lab.

4. To successfully build FugakuNEXT (lowest priority? :-).



FugakuNEXT R&D Organizations S

Riken R-CCS to assume leadership of the project, in collaboration with the GPU & CPU
vendors Fujitsu and NVIDIA, as well as international leadership HPC/AI organizations

The Next-generation platform division headed by M. Kondo to assume day-to-day
development activities, but the entire R-CCS will participate in the R&D

e R&D will be open and sustainable (unlike previous projects)
DOE-MEXT MoU on HPC (2024/4/9)
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b b | Univ. & National Labs Gl
N © HPCI Centers —Town Hall Meetings
Participation by US w/Riken partnership & other user

& JP vendors from e sl engagements on

the onset (FS) EuroHPC b S 1ats
rm
GPU/CPU Centers phase 2/3 platforms
Vendors DoE-MEXT workshops (quarterly since 2023)

Open source community
= Other vendor
—— contractors

DoE Labs

User Community
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e Initial release (V 1.0) August 5, 2024,
e Enhanced version (V1.1) released Nov 17, 2024
o Added industry applications and Al frameworks

Real FUGAKU

iy

Virtual Fugaku: Vendor-independent, general-purpose, high-functionality
HPC software stack for Clouds, Fugaku/FugakuNEXT and Other SCs

®, |||
RCCS

Virtual FUGAKU = o=

environment

Satellite Fugaku

Testbed for Virtual Fugaku on
AWS Graviton3/3E (Arm+SVE
CPU) provided to Fugaku
users by R-CCS

virtual ‘™ FUGAKU

Private Fugaku

Private environment on AWS
Graviton3/3E (Arm+SVE CPU)

virtual ™ FUGAKU

SVE & scaling optimized R-CCS & SVE & scaling optimized R-CCS &
User applications, OSS/ISV User applications, OSS/ISV
applications applications

SVE & scaling optimized R-CCS &
User applications, OSS/ISV
applications

nnnnnnnnn

Fugaku Development & Execution

Fugaku Development & Execution Fugaku Development & Execution

e Started providing the following two environments
targeting AWS Graviton CPUs (August 5, 2024) P
_ _ e i meien o s | 18
« Now v. 1.2 and continue to improve == @ — |
e Will provide x86/GPU environments in the future SLILE

@ ‘Satellite Fugaku’
Certification environment for
Fugaku users (on AWS)

Environmen t (HPC&AI SW Stack e.g,
|| compilers, libraries, frameworks)
L

RILILE

¥ B =] FugakuOnDemand provides f (@ =

the same usability.

@ ‘Private Fugaku’
Singularity container distro
for AWS users

{3 sylabs

[ Configuration of Satellite Fugaku al

e Base on Amazon EC2 Hpc7g instance
e 1 Graviton3E login node + 8 Graviton3E compute nodes

2 Perctetate 8 e

riken-rccs/virtual-fugaku/vf-verll




Packages in Virtual Fugaku 1.x REES

e Virtual Fugaku 1.x includes the following software packages along
with their many dependencies.

o Selected from the most frequently used Spack packages on real Fugaku since July, 2022.

e Built with GCC 14.1.0 and EFA-enabled OpenMPI 4.1.6.

GENESIS molecular dynamics 2.1.3 genesis pandas data analysis and 2.1.4 py-pandas
. » manipulation
Gnuplot graphing utility 6.0.0 gnuplot <cikit-learn machine learning and data 1.5.0 py-scikit-
GROMACS molecular dynamics 2024.2 gromacs mining learn
GNU Scientific Library el 1 i Fundamental algorithms for 1.13.1 py-scipy
(GSL) numerical library 271 g3 ey scientific computing
Julia programming language 1.10.2 julia TOML Python library for TOML 0.10.2 py-toml
A . 7.3.1 uantum-

LAMMPS molecular dynamics 2023080; SRS Quantum Espresso ab initio calculation Zspresso
Metis graph partitioner 5.1.0 metis SCALE weather and climate 5.4.4 scale
Open Babel chemical toolbox 3.1.1 openbabel tmux terminal multiplexer 3.4 Tmux
OpenFoam CFD 2312 openfoam CP2K quantum chemistry 2024.1 cp2k
Paraview visualization 5.12.1 paraview CPMD ab-initio molecular dynamics 4.3 cpmd
Parmetis parallel graph partitioner 4.0.3 Parmetis FrontISTR Large-Scale Parallel FEM 5.3 frontistr
Atomic Simulation atomistic simulation 3.21.1 py-ase AutoDock-Vina molecular docking 1.2.3 autodock-vina
Environment -

Tensors and Dynamic neural 21.1 -torch
Matplotlib Visualization 3.9.0 py-matplotlib P networks P
MPI for Python Python bindings for MPI 3.1.6 py-mpidpy TensorFlow machine learning framework 2.14.1 py-tensorflow
NumPy array computing in Python 1.26.4 py - numpy
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Virtual Fugaku as a basis of FugakuNEXT Software Qi

Development Related

e Expansion of included packages and improved packaging efficiency
. ISV addition trial: STAR-CCM (Siemens under consideration) Soack Bund Cache
. Automation through CI/CD/CT process (already started) S
. Graviton4 evaluation

o Simplified introduction for Private Fugaku
. Trial of Spack Build Cache Amazon Machine
. Utilization of Amazon Machine Images (AMI) and other AWS frameworks Image (AMI)
e Application to R-CCS planned systems — Inheritance as a standard stack for Fugaku NEXT, etc.

. Trial deployment to other architectures such as x86 — Application to RIKEN AI4S, RIKEN JHPC-Quantum

supercomputers, etc., and provision to other HPCI centers | mam H PSF
. Deployment in Phase 1, Phase 2 | — man
HIGH PERFORMANCE
Initiatives for community building and cultivation L] o7 WARE FounDATION

e Strategic participation in the HPC Software Foundation => Collaboration with DoE E4S HPC Stack
e Community building through the SPACK community and HPSF

e Participation in various events (APAN59 3/6 Cloud WG, SCAsia2025 AWS tutorial, introduction at 2025 ACM
ASEAN School)

Breaking away from vendor dependence => As a base for the next-generation Fugaku system
software development



2

) Riken Leadership in FugakuNEXT Applications ¢
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@ _Code Porting &

Evaluation
Code Porting Support on Phase
2 machlnes W/CI/CD/CB

o C/C++, MPI b | Contamers?
. en 8 . * EasyBuild,
& Spack

* Reproduce :
* Benchpark )

* Schedulers
* Reframe,
Ramble

e Collaboration w/DoE and
Vendors to establish common
CI/CD/CB

e Early participation of wide-
ranging apps community

B ||
RCCS
@ AlI-based Code ® FugakuNEXT Phas
Modernization 2 Proxy

Coding Al to generate & Port
Legacy HPC Codes
PET

(D; 8.G)

L
codegen(D, 8

e Al already being incorporated
into Fugaku Services

e AI coding support to port, tune,

incorporate new algorithms

As targets for code dev &
porting, onto Phase 3 and 4

External Network

HPC Supercomputer “Fugaku”

e i E
s
o & ot
. N i
1E 3 '3
& £
R-CCS DC Facility ~ 3
> 40MW Power & Cooling 1 B S
= R

HPCl Wide Area Storage : >100 PetaBytes
Distributed FS GFARM, S3, etc.

Fugaku Storage: 150 PetaBytes (current)
Fujitsu FEFS-LUSTRE HDD PFS + NVMe

e Phased deployment of N-2, N-1,
-+ platforms

e Utilize production platforms
(AI4S, Quantum-HPC) to test
system software and apps

FugakuNEXT Partnership Program for Early Access to Development




Phased Dev&Deployment Towards FugakuNEXT

Riken-lead continuous development of system software and apps

utilizing Fugaku+Al4S+JHPC-Q & preproduction machines

UMt = = = = = == = = == m e m e o — oo — oo ~
R?&‘;&g « Phasel (2025/4) — Al4S phasel, A set of small cluster of a variety of

Cloud  GPUs (total 200GPU), First platform towards Virtual Fugaku based SW 1

................................................... /
Q
/ \

L. Phase? (End of FY2025) — Al4S phase 2 + JHPC-Q, Total 2130 NVIDIA \I
NeV\; GB200NVL4 GPUs in APU config + Virtual Fugaku + Dok E4S + Al + 1
Cluster Hybrid QC Software Stack and CI/CD/CB Platform

Rooum « Phase 3 (FY2027) — Dedicated mid-sized cluster consisting of

. GPU/APU one generation prior to FugakuNEXT, Riken SysSoft lelzl|n
‘. Application CI/CD/CB + operations rehearsal

[
New ., ] |
Data'centeﬁr)hase 4 (FY2029-30) FugakuNEXT deployment & operations




R oM  gonchpark: DoE and RIKEN Collaboration on Cl / CD / CB [Olga
Pierce @ LLNL, Jens Domke @ R-CCS, ...]

Towards Collaborative Continuous Benchmarking for HPC

® Collaborative Continuous Benchmarking o
Authors: Dga Pesroe Aleg Sooll & 'E‘ @ Lo iacoheen, Hekdi Pexon
e Designed to minimize human effort by maximizing e 925 -
reuse and supporting easy collaboration between o esed
blished: 12 Mueesimier 2029 Pug| @
HPC centers, vendors, and researchers " B e
o5 o o [ EEEDE
. M M ;____
° Com.ponentf,. Source code, Bglld instr., Input.s, — 2 ln g —@
Run instructions, Exp. evaluation, and Cl testing N oo
HPE vendors, ard verfying E!P‘mm ! . HPC hanchmarking &
e Security considerations: Hubcast for mirroring code, el ano chlkren of I R
Jacamar for GiLab runners with authorized account P S B e
:-e‘:’rr.;'klr';. |oeEnt a g ] u — @ I=ly unimaginaake
[ ; I I Iﬁ, Rambie Etm‘-::ﬂt nenls R callabaornive
® Current status: g
e Know systems (10): Fugaku, CSC LUMI, JSC Juwels, ' chmaring it nei
CSCS Piz Daint, various LLNL (ElCapitan) and LANL TR o enchparic component nteraction. 177

e 20 HPC benchmarks; incl. 3 from
R-CCS (QWS, GENESIS, SALMON)

How to build  Run an Re-run an Run an Cl: Run Performance
Paper: dl.acm.org/doi/10.1145/3624062.3624135 and run experiment  experiment on experiment on experiment on  measurements
benchmarks  onasystem 4 system a new system HPC systems +full spec of

experiment

Repo: github.com/LLNL/benchpark onasystem



https://dl.acm.org/doi/10.1145/3624062.3624135
https://dl.acm.org/doi/10.1145/3624062.3624135
https://dl.acm.org/doi/10.1145/3624062.3624135
https://github.com/LLNL/benchpark
https://github.com/LLNL/benchpark
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AMD vs NVIDIA Accelerator Specifications
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BF16 Dense TFLOPIs | 8,333

FP8 D
| BT
FP4 D

Supported FP4 Dtypes

r.Memory Bandwidth

ense TFLOPIs 16,666

éﬁ's'é'l’FLb'l-”f"""""’lB666""""'333’34"""""()'0()'()""

ense TFLOPI/s 50,000

OCP MX4,

NVEP4

1,700W

. 13.0 TByte/s

2,800W
16,667
33,334

50,000

OCP MX4,
NVFP4

32.0 TBytels

19.6 TByte/s}"

1,800W i
10,000
20,000

40,000
OCP MX4

o llllllMngwqqu lelllllll_l_l_!_l_2_l_8l_8_llGllBllllll

T T1024GB"

“4372°GB

Scale

Up World Size 72

144

72

Scale Up Bandwidth (Uni-di) |

1,600 Gbit/s *

Scale Out Bandwidth (Unl-dl)

Cooling DLC

1. The VR200 NVL144 has 144 compute chiplets across 72 logical GPUs.
2. The VR300 NVL576 has 576 compute chiplets across 144 logical GPUSs.

‘I ,800 GByte/s

1,800 GByte/s 1,800 GBytel/s

1,600 Gbit/s”
DLC

""27400"Gbitls”

DLC

Source: SemiAnalysis Estimates

om
RCCS

Not much
advance

,/BW/ W c.f.

Fugaku
(~50GB/W)

Future HBM
Roadmap
not very
favorable
N/
Innovations
in memory



&L Divergence of HPC and Al

(Convergence)
Compute Memory Network Storage
| 111
TTTRTIT 7 N\
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].l | FDDDDDDDD% /N I\ I\ /\

[T Trinovations will not be driven by the commercial Al community,
but rather the HPC(/Al) community has to lead

Algorithms Programming Libraries (Sys SW)




What about Dense Linear Algebra? QMY e

Precision Depending Analysis — what and how matrix engines
provide good ROI relative to their silicon occupancy?

e Energy = compute (multipliers, volume) + data movement >>
(between units, surface)
e Low precision — low surface:volume, optimize to minimize Low precision High precision
data movement, matrix engines to minimize wire distance MM MM
e High precision — high surface:volume, data transfer less Low volume high volume
problem, performance & energy gain small, dark silicon of (compute) : (gompme) :
unused multipliers wasteful, wide vectors sufficient. surface SIEES (COil)
(comm) ratio ratio
e 4~16 bit apps: Deep Learning/Al training e Vector units may
e 19~ (TF32) ~ 32 bit apps: DL/Al, molecular dynamics, higher h;'lo to redlfice é’:nzlifi‘;fger:;ﬁ;
order methods (mixed precision) at:nt;?g; V T T
e 64 bit apps: first-principle material science eg DFT => _ Very wire MO omiensay
Emulation of “64 bit” apps with “Ozaki Scheme II” => with energy efficient cf
1/20 slowdown we expect effective 10 Exaflops from 200 efficient vectors

INT8 ExaOps “Zettascale” Al machine (20x Fugaku)




. One ldea for Using Mixed Precision Goes Something
~ Like This...

- Exploit lower arithmetic as much as possible.
= Especially for the bulk of the computation

» Correct or update the solution with selective use of
higher floating point arithmetic to provide a “refined
results” (more accurate).

* Intuitively:
= Compute a 32 bit result,

= Calculate a correction to 32 bit result using selected higher
precision (64 bit) and,

= Perform the update of the 32 bit results with the correction
using high precision (64 bit).

Slides courtesy Jack Dongarra, U-Tennessee



S e N & COMMUNICATIONS
“ACM

Leveraging Mixed Precision for Linear Algebra

s (LU O(n°)) and then iteratively

Idea: use low grecision to compute the expensive fI%p
64 arithmetic

refine (O(n?)) the solution in order to achieve the F

Iterative refinement for dense systems, Ax = b, can work this way.

L U = lu(A) lower precision O(n3)
x = U\(L\b) lower precision o(n?)
r = b - Ax (with original A) FP64 precision o(n?)

WHILE || r || not small enough
1. find a correction "z" to adjust x that satisfy Az=r
solving Az=r could be done by either:

> GMRes preconditioned by the LU to solve Az=r Iterative Refinement GMRes lower precision O(n?)
2. X=X+2 FP64 precision O(n?)
3. r = b - Ax (with original A) FP64 precision O(n?)
END

Slides courtesy Jack Dongarra, U-Tennessee J. Langou, et al., Exploiting the Performance of 32 bit fl-pt
’ Arithmetic in Obtaining 64 bit Accuracy, in: Proc. of SCO6

Originally mOtivated by the Sony PlayStation E. Carson & N. Higham, “Accelerating the Solution of Linear

SP peak 205 GﬂOp/S DP peak 15 GflOp/S Systems by Iterative Refinement in Three Precisions SIAM J.
’ Sci. Comput., 40(2), A817-A847.

P ——— . N 1 1 ' o 1 ' T —~~ . 1 1 . ~ ~ O m



HPL-MxP Top 10 for June 2025
M“
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DOE/NNSA/ANL
USA

DOE/SC/ANL
USA

DOE/SC/ORNL
USA

AIST
Japan

EuroHPC/CSC
Finland

RIKEN Center for
Comput. Science, Japan

EuroHPC/CINECA
Italy

ClI, Institute of Science
Japan

NVIDIA
USA

DOE/SC/LBNL/NERSC
USA

El Capitan, HPE Cray 255a, AMD 4t Gen EPYC
24C 1.8 GHz, AMD Instinct MI300A, Slingshot-11

Aurora, HPE Cray EX, Intel Max 9470 52C, 2.4
GHz, Intel GPU MAX, Slingshot-11

Frontier, HPE Cray EX235a, AMD Zen-3 (Milan)
64C 2GHz, AMD MI250X, Slingshot-11

ABCI 3.0, HPE Cray XD670, Xeon Platinum 8558
48C 2.1GHz, NVIDIA H200, Infiniband NDR200

LUMI, HPE Cray EX235a, AMD Zen-3 (Milan) 64C
2GHz, AMD MI250X, Slingshot-11

Fugaku, Fujitsu A64FX 48C 2.2GHz, Tofu D

Leonardo, BullSequana XH2000, Xeon 8358 32C
2.6GHz, NVIDIAA100, QR NVIDIA HDR100 IB

TSUBAME 4, HPE Cray XD665, AMD EPYC 9654
96C 2.4GHz, NVIDIA H100, Mellanox NDR200

Selene, DGX SuperPOD, AMD EPYC 7742 64C
2.25 GHz, Mellanox HDR, NVIDIA A100

Perlmutter, HPE Cray EX235n, AMD EPYC 7763
64C 2.45 GHz, Slingshot-10, NVIDIAA100

11,039,616

8,159,232

8,560,640

479,232

2,752,704

7,630,848

1,824,768

172,800

555,520

761,856

Source: Top500 Presentation, June

2025, Erich Strohmaier

1.742

1.012

1.353

0.145

0.380

0.442

0.241

0.035

0.063

0.079

15

47

23

19

16.7

11.6

11.4

2.36

2.35

2.00

1.80

0.64

0.63

0.59
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(New!) Ozaki Scheme li

Ultra-fast emulation of matrix multiplication
using INT8 Tensor Cores

Advancing Al-oriented architectures
toward the evolution of
traditional scientific computing

Katsuhisa YuKki Toshiyuki
Ozaki Uchino Imamura



Ozaki-scheme:
« Error-free transformation of AB AT = diag(p) » {AW); 4); A3 }T {(Z‘Od,Z‘d,Z‘Zd, ...)T®I}

for A € R¥*™ & B € Rk*™,
B ={(27%¢,274,272¢, QIHBW;B@;B® _}x«diag(v)
« Simply, split A & B into sub-matrices such that

A=AW 4 .. AGa=D § gGsa), C = ATB = diag(y) * {4; )T * ([d]"®1)([d]®]) * {B; } * diag(v)
B =B 4...4 pisg-1) 4 B(SB), _ z diag(u) A(i)TZ—(i—l)dz—(j—1)dB(j)diag(v)
( Y

A0TRU) = g (Aa)TB(j)) ,for Vi, j

exponent

m;;;\x [logz |A(i)pq|] > mz?x[log2|A(i+1)qu +d, forVi,q so| [go] ...

B BL)
. . Re-scale the row/column-
+1 - .
max [1032 |B(])pq|] = mglx[logle(] )qu +d, forVvj,q A . . - .. . wise alignment of the

. exponent part and
\ 2d + log,k < bitsizeof(Acc) A . . - accumulate onto C

. Thp _vsa vs& 20T p() 5
Then, 475 = T4, 22, 40 BD. ek 11 C
o2
a; | 1 : ety
a;, | I7AE N AL IIII part
Aik—-1 ' 12/ |
N T . L
exponente——ik 5 C += diag(n) x {A® BU)} X diag(v) X 2 (i+j-2)

AD 4D 4B glsa-D) glsa) L
\

emainder
INT8GEMM by TensorCores/MatrixEngines

|
each several bits



Current results on a G
- MM vs gemm

GH200 FP64: 67TFLOPS

0z

[TFLOPS]
100

90

INT8: 1979TOPS

32X

80 GB200 FP64: 90TFLOPS

70
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0

Algorithm A.

256

INT8: 10000TOPS
111x

512

1024

7

-8

-9

2048 4096

""""""""""""""""" ~250TF
Z \ GB200
0zGEMM
N
Ny
~90TF
"""" GB200
FP64GEMM
. =0

8192

l

N

16384

Matrix dimension: M=N=K
32768

--DGEMM

-7/

-3

-9

Algorithm B.




Throughput test (FP64 emulation) 26

Rubin 300 Ultra
RTX4090 GH200 (estimate by S. Matsuoka)
0.62 60.9 O,

) ] I e
Ozaki Scheme | 5.84 34.5

TFLOPS TFLOPS
Ozaki Scheme I (new) 74—98 669—802 800~1300 |

TFLOPS TFLOPS TFLOPS per 4 GPU die package

With Ozaki Scheme I,
emulation outperforms native FP64
even on data center GPUs.

Consumer-grade GPU — RTX4090: INT8TC: FP64  =512:1

DATA Center GPU
DATA Center GPU

— GH200:

INT8TC: FP64TC = 29.5:1
INT8TC: FP64TC = 112.5:1

Code is available at RIKEN’s GitHub presented by Dr. Uchino


https://github.com/RIKEN-RCCS/accelerator_for_ozIMMU
https://github.com/RIKEN-RCCS/accelerator_for_ozIMMU
https://github.com/RIKEN-RCCS/accelerator_for_ozIMMU
https://github.com/RIKEN-RCCS/GEMMul8
https://github.com/RIKEN-RCCS/GEMMul8
https://github.com/RIKEN-RCCS/GEMMul8

Acceleration of Quantum Chemistry using RUCS
Combinatios of Emulation (Ozaki) & Mixed
Precision utilizing AI-Centric GPUs

Error vs. Splits (Molnupiravir, BigDFT)

Reducing Numerical Precision Requirements in _ 1 Q o° N G’G O BFLOAT16
2 107 A1k Ba ~ = A B ¥ Sg FP16
Quantum Chemistry Calculations = PN @G‘O S 107 Gl T Bo A AVMDFP24
< 0 A = 2 < % Ax\ ¢ FP16(TC)
= v A N 2 10_6 VL N
William Dawson,* Jens Domke,’ Takahito Nakajima,T and Katsuhisa Ozakit g 10 [’\ i g 7‘»\( \\‘
> 7‘?\ \ 2§ £ 107° % P2\
tRIKEN Center for Computational Science, Kobe, Japan 8 -12 = C g \ \\\
[ 10 ﬁ \ &) 10—12 A
{Shibaura Institute of Technology, Saitama, Japan o k

Ye- o afe—sfe oo o= A

E-mail: william.dawson@riken.jp 5 10 15 20 5 10 15 20
Number of Splits Number of Splits
Abstract @
. ) 10° ' \ 5 10°
The abundant demand for deep learning compute resources has created a renais- —~ M- &@ ©
. . . o . . . - -3 A " Al > 43
sance in low precision hardware. Going forward, it will be essential for simulation S 10 . \\ S \@ o 10
.. —
s s . ; R e > L y @ )
software to run on this new generation of machines without sacrificing scientific fi- 9 10—6 = TN = @ = 10—6
y =] ! w
(] N
delity. In this paper, we examine the precision requirements of a representative kernel LI.CJ * M ‘ N %
-9 \ . Q -9
from quantum chemistry calculations: calculation of the single particle density matrix 8 10 % N T3 F - < 10
A 9
from a given mean field Hamiltonian (i.e. Hartree-Fock or Density Functional Theory) < 10‘12 %& \ g 10'12
represented in an LCAO basis. We find that double precision affords an unnecessarily 5\:( ll o ’ i =
high level of precision, leading to optimization opportunities. We show how an approx- 5 10 15 20 5 10 15 20
imation built from an error-free matrix multiplication transformation can be used to Number of Sp“ts Number of SplItS

potentially accelerate this kernel on future hardware. Our results provide a road map

arXiv:2407.13299v2 [physics.chem-ph] 22 Oct 2024

Figure 7: Errors when using purification vs. the number of splits used in the Ozaki scheme
applied to the Molnupiravir / BigDFT system (matrix dimension 147 x 147). We examine
the error for four different floating point types: BFLOAT16 (8, 7), FP16 (5, 10), AMD FP24

for adapting quantum chemistry software for the next generation of High Performance

Computing platforms.
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R-CCS

* Memory-bound code: what does low precision do there?

400

300

200

Gstencil/s

100

Memory-bound Codes

» Simple answer: “reduces the memory traffic!”

*

» Complex answer : “low precision is mostly on matrix engines”

» Lack of support for L1 and L2 BLAS: inefficient use of matrix engines

Memory-Bound:
1.34(/2) TB/s

Neither Memory-Bound

Nor Compute-Bound

Memory-Bound: Memary-Bound: Memory-Bound: m
1.57(12) TBJs 1.54(/2) TB/s 1.51¢/2) TB/s 7.4(/9.5) TFLOPS/s
100 — 200
| —
25'35 2£‘38 >
%) i\h\:ﬂ\: e = L
187 - Q \. \\“‘: o
N . g \ \ g
N N\ 5 \ . 5
\ N © N N °
% = \\E‘E. N
\ o = W 0
2d5pt 2d9pt 2d13pt 2d49pt

‘ m ConvStencil & LoRAStencil m Brick m EBISU

| v l |

Tensor Core CUDA Core

3d27pt

Aoy Ay Matis

ol RSSS0S800

* Zhang et al., Can Tensor Cores Benefit Memory-Bound Kernels? , Under review (can be shared)
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Use of INT8 Tensor Cores in explicit voxel
finite-element wave simulation

« Developed an algorithm that guarantees FP64-equivalent accuracy even when using integer
operations within the explicit method, and accelerated simulations with INT8 Tensor Cores

« Convert element matrix-vector product K, u, into products of integer-component matrix and FP64 vectors:

K ds
- Ku,=-—
ere 256

« Convert the main computation part K**u, to M sets of integer-valued matrix-vector products
K",y and compute with INT8 Tensor Cores (s, a are FP64 coefficients):

Kiu, + Z—Zue [red indicate integer matrix/vector, black indicate FP64 matrix/vector]

* Kéntﬁe = 52?11 aiKéntﬁeint(i)
« Furthermore, data conversion cost is reduced by hierarchical data conversion (u, — Ueintoa(i) — ﬁeintg(i,j)>
« FP64-equivalent accuracy obtained by use of M = 8 INTS8 stages

Computation type|Fraction bits Value
FP128 112 507813.690592559616827867910192902549
FP64 52 507813.6905925632
FP32 23 507814.750
INT8 (M = 4) 28 507813.7802133318
INT8 (M = 8) 56 507813.6905925595

Tsuyoshi Ichimura, Kohei Fujita, Muneo Hori, Maddegedara Lalith: Low-ordered Orthogonal Voxel Finite Element with INT8 Tensor
Cores for GPU-based Explicit Elastic Wave Propagation Analysis, /nternational Conference on Computational Science 2024



Use of INT8 Tensor Cores in explicit & 9{, :
voxel finite-element wave simulation ™"

« Compare the time required to obtain equivalent accuracy@A100 PCle GPU

« Use of INT8 Tensor Cores lead to 43.3/9.62 = 4.5-fold speedup in sparse matrix-vector
product part and 3.4-fold speedup of total simulation while attaining FP64-equivalent

accuracy
« By use of orthogonal voxel elements with less numerical dispersion in the INT8 Tensor
Core accelerated simulation, we can use larger elements compared to standard voxel

finite-element, enabling a total of 17-fold speedup

Input source

Computation type ds Elapsed time (s)
(mm)|Time-step loop Matrix-vector product
OVFEM FP64 2.0 48.3 43.3 [2.1 TFLOPS]
Orthogonal OVFEM FP32 2.0 18.9 15.5 [5.9 TFLOPS]
voxel FEM - poovEEM INTS (M = 8)| 2.0 14.2 0.62 [64.4 TOPS]
Standard voxel FEM VFEM FP64 1.2 242.8 -
Tsuyoshi Ichimura, Kohei Fujita, Muneo Hori, Maddegedara Lalith: Low-ordered Orthogonal Voxel
Finite Element with INT8 Tensor Cores for GPU-based Explicit Elastic Wave Propagation Analysis, 30

International Conference on Computational Science 2024



Integer-arithmetic based sparse linear solver ™ ¥

T. lwashita (KU, HU, RIKEN), K. Suzuki(KU, HU), T. Fukaya(KU, HU)

KU: Kyoto Univ., HU: Hokkaido Univ.

An integer-arithmetic based AMG-FGMRES solver was developed.

« The accuracy of the solution vector is identical to the
FP64-based solver.

 Most of computations are performed using integer
arithmetic instructions.

Approach
e |terative refinement method
« Quter solver: only checking the accuracy of solution
* Inner solver: an integer arithmetic iterative solver
« Initial scaling of the linear system to be solved
« Division of coefficient matrix to matrices with a different range
« Shift operations for avoiding overflow and underflow
« Automatic shift amount setting
« Maximize the accuracy using the property of GMRES
KYOTO UNIVERSITY

atmosmodd from SuiteSparse

10714 ™
S 10741 N\
0 —— FP64 \\‘
|- 4
. 10774 == FP32 \\
2 INT ~_
10710 : :
0 10 20

[teration number

On convergence rate is
comparable to FP64, FP32 solvers.

The time to solution is reduced to
2/3 of the FP64 based solver on CPU
(GPU version forthcoming)

Papers

K. Suzuki et al., ACM TOMS, 2025
(https://doi.org/10.1145/3704726)

T. lwashita et al., ScalA20, 2020
(https://doi.org/10.1109/ScalA51936.2020.00006)



https://doi.org/10.1145/3704726
https://doi.org/10.1109/ScalA51936.2020.00006

@ om RAPTOR: Practical Numerical Profiling of Scientific Apps
[Domke, Wahib, et. al. SC25]

Motivation:

® Historically, easy choice: FP32 enough (= speedup & lower bandwidth
requirements), or is FP64 necessary?

® Some numerical methods more amenable to systematic reduction of precision
(usually guided by robust mathematical foundation for maintaining accuracy)

® Al induced HW trends:

e low-precision units (TF32, BF16, fp16, posits, ...) for vector and tensor operations

e FP64 capabilities stagnate or are reduced

=» R&D Question: how to lower precision under lack of mathematical foundation?

Collaborators: Faveo Hoerold, Ivan lvanov, Akash Dhruv, William Moses,
Anshu Dubey, Mohamed Wahib, Jens Domke

Argonne & ETHzirich ILLINOIS

HHHHHH cEHAHMPAIGN




R Towards 100x or ‘Zettascale’ HPC Performance ™
for FugakuNEXT

e Simulation Workloads ~100x
e Raw HW Performance Gain: 10x ~ 20x
e Mixed precision or emulation: 2x ~ 8x
e Surrogates / PINN: 10x ~ 25x

e Total: 100x, some apps 200x ~ 1000x or more over Fugaku
=> 100x or even ‘Zettascale’

e Raw AI HW performance in Zettascale (> 100x)
e Low precision, sparsity, new models---
o Expect ‘Zettascale’” Al performance

e With 40MW Limit (not GigaW e.g., hyperscalars)
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156 qubits
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Overview of our QC-supercomputer hybrid platform RCCS

JHPC-guantum

GB200 NVL4
Al+QCHPC
|

Osaka U.

[Supercomputer

Ipercomputer  piet

(Fugaku) Low-latency
Network (Infiniband)
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5 om
scA/HPcASIH 2026 et Keynotes - Hpci,uCCS

Everything with HPC - Al, Cloud, OC and Future Society SlghpC AI, QC-HPC
wzm January 26-29, 2026 e 28 Workshops

: V Osaka International C tion Cent i
saka International Convention Center -20 Tutorials

(Osaka, Japan)
e 101 full papers
submitted

e 20 BoFs submitted

_ N o Grerfrlo Invited
— A RR wRAEERE ~ - : | TI‘aCkS

e ~100 International
Exhibitors
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